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Feedback Control

Show nice video
http://www.youtube.com/watch?v=cyN-CRNrb3E

http://www.youtube.com/watch?v=Ep2lNMic_fk

http://www.youtube.com/watch?v=B6vr1x6KDaY
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Loss and Delay in Networked Control Systems

Plant

Controller

delay d

loss prob. p

y(t)u(t)

Loss and Delay

In control literature: assumed to be fixed.

In communication literature: depends on network usage.
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Problem Setup

N Systems

ẋ(t) = u(t) + w(t),

where u(t) is the control input and w(t) noise.

Impulsive input

u(t) =
∑

k

−δ(t − tk)x(t),

each impulse resets the state x(t) to the origin.

Performance Measure (Cost)

J = lim sup
M→∞

1

M

∫

M

0
E[x(t)2]dt
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. . .

u1 u2 uN

b
ottlen

eck
lin

k

R. Blind: Trading loss against delay in Networked Control Systems 5



Problem Setup

N Systems
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Closed Loop System

t 6= tk : u(t) = 0,

ẋ(t) = w(t),

t = tk : x(tk) = 0.

When to reset? How to choose tk?
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Comparing Time-Triggered and Event-Based Control

Time-Triggered Control

t

0

x

T T T T

Event every T seconds.

Event-Based Control

t

−∆

∆

0

x

Event whenever |x | ≥ ∆.

Åström 02, Rabi 09, Blind 11

Jtt =
Ttt

2
+

Tttp

1 − p
+ d

Åström 02, Rabi 09, Blind 11

Jeb =
Teb

6
+

Tebp
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where Teb = ∆2
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Jeb =
Teb

6
+

Tebp

1 − p
+ d ,

where Teb = ∆2Literature: Event-based control is superior for NCS because fewer
events are necessary to get the same performance.

The traffic pattern is different.
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Interevent Time Distribution of Event-Based Traffic

Interevent Time Distribution (Rabi 2009)

The Probability Density Function
(PDF) f (t|∆) of the interarrival times
Teb of event-based control is given as:

f (t|∆) = ∆
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Theorem (Blind 2011)

The Palm-Khintchine Theorem holds: For N → ∞, the arrival
process of all agents together converges to a Poisson process.
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Theorem (Blind 2011)

The Palm-Khintchine Theorem holds: For N → ∞, the arrival
process of all agents together converges to a Poisson process.

’Nice’ traffic.

Possible to use ’classic’ theory to analyze NCS.
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Trading Loss Against Delay

Time-Triggered Control

Jtt

τ
=

1

2ρ
+

p

ρ(1 − p)
+

d

τ
.

TDMA

FDMA

τ : packet duration.
ρ := τ/T : load of one agent.
ρΣ = Nρ: offered network load.

Event-Based Control
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+

p

ρ(1 − p)
+

d

τ
.

ALOHA

Infinite queue

Erlang’s loss model
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Normalized Cost for N = 8 agents
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Performance depends on the control and communication strategy.
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Outlook: Scalar System

Scalar System

ẋ = ax + u + w
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Outlook: Scalar System

Scalar System

ẋ = ax + u + w

Theorem (Blind 2012)

Suppose, the scalar system is controlled by an event-based control
scheme with bounds {∆i} and a packet loss probability p. Then
the cost is

J =

∑

∞

i=0 pi
∫ ∆i

0

∫

t

0 x2ea(x2
−t2)dxdt

∑

∞

i=0 pi
∫ ∆i

0

∫

t

0 ea(x2
−t2)dxdt

.
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ẋ = ax + u + w

Theorem (Blind 2012)

Suppose, the scalar system is controlled by an event-based control
scheme with bounds {∆i} and a packet loss probability p. Then
the cost is

J =

∑

∞

i=0 pi
∫ ∆i

0

∫

t

0 x2ea(x2
−t2)dxdt

∑

∞

i=0 pi
∫ ∆i

0

∫

t

0 ea(x2
−t2)dxdt

.

How to choose the bounds {∆i}?
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How to Choose the Bounds?
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Summary and Outlook

Time-Triggered Control

Deterministic traffic
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Conclusion

Performance depends on the control and communication scheme.

R. Blind: Trading loss against delay in Networked Control Systems 12



Summary and Outlook

Time-Triggered Control

Deterministic traffic

Jtt

τ
=

1

2ρ
+

p

ρ(1 − p)
+

d

τ
.

Event-Based Control

Poisson Traffic (for N → ∞).

Jeb

τ
=

1

6ρ
+

p

ρ(1 − p)
+

d

τ
.

Conclusion

Performance depends on the control and communication scheme.

Outlook

Scalar systems.

Network instead of one bottleneck link.

Send optimally.

More realistic communication protocols.
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