Q}Ogiﬁ:‘(! Tempé’ A

AN OBJECT-ORIENTED LIBRARY FOR SIMULATION OF COMPLEX
HIERARCHICAL SYSTEMS

Hartmut Kocher
Rationalf
RosenstraBe 7
D-82049 Pullach im isartal
Germany

ABSTRACT

As today’s systems are becoming more and more complex, simu-
lation is often the only viable way to verify the functionality of a
system, or to estimate its performance. Simulating a complex
system is itself a complex task.

In this paper, we will present a flexible general purpose li-
brary for the simulation of complex hierarchical systems. The
library is implemented in C++ and uses high-level abstractions
that are closely related to the problem domain. This eases the
mapping from a simulation model to an actual simulation pro-
gram. The library supports hierarchical decomposition of simu-
lation models into submodels and model components. Model com-
ponents are strictly encapsulated and communicate with each other
using a handshake protocol. This offers the ability to highly reuse
standardized model components and quickly create or modify a
simulation model using a ‘plug-and-play’ approach.

After discussing the main abstractions of the library, we will
describe a sample application. Finally, we outline the modifica-
tions that are necessary in order to support distributed simula-
tions. '

1 INTRODUCTION

Today’s systems are becoming more and more complex. The hu-
man mind is unable to comprehend complex systems in their en-
tirety. Therefore, complex systems need to be structured in way
that allows humans to cope with this complexity. This is usually
achieved by breaking down the system into a hierarchy of sub-
systems and modules (Booch 1991). In such cases, simulations
can help in evaluating different design choices. Simulation pro-
grams can be used to verify the functionality of the system as
well as to estimate the performance of the target system. '

This research was performed while the author was a member of
the Institute of Communications Switching and Data Technics at
" the University of Stuttgart.

Martin Lang
University of Stuttgart
Institute of Communications Switching
and Data Technics
SeidenstraBe 36
D-70174 Stuttgart
Germany

Simulating a complex system is itself a complex task. There-
fore, it is important to structure simulation software in a suitable
way. The complexity of simulation programs can be reduced by
decomposing the simulation model into a hierarchy of submodels
that can be refined in further steps. Although many parts of a
simulation model could potentially be reused across different
applications, this is not supported very well in current simulation
programs due to strong coupling between model components.
Reuse of models and submodels would be an important step to-
wards economic development of simulation programs that could
be used to investigate several design choices in a cost efficient
way. This is a general problem of software development and is
one of the reasons for the so-called software crisis. The object-
oriented paradigm promises to improve the situation dramatically.
That's why more and more simulation libraries are written in an
object-oriented programming language.

Currently, two approaches can be differentiated: on the one
hand, simulation environments are mostly targeted at specific
application areas. They provide high-level abstractions that are
taken from the problem domain. Therefore, they are easy to learn
and use. Sometimes, they even offer graphical user interfaces and
their own simulation language, e.g., (Belanger 1990; Melamed
and Morris 1985). Unfortunately, most simulation environments
cannot be extended by the user, or do not adapt very well to dif-
ferent needs even within the same application domain.

On the other hand, general purpose simulation libraries prom-
ise to overcome these difficulties. They are developed using gen-
eral purpose programming languages. Therefore, they can be ex-
tended and adapted easily by the user. Recently, many simulation
libraries have been written in object-oriented languages, mostly
C++. Unfortunately, most of them focus on implementation is-
sues rather than using abstractions from the problem domain.
There is a semantic gap between the low-level abstractions they
offer, such as process classes, and the problem-oriented abstrac-
tions the user wants. Simulation libraries that are more problem
oriented are just emerging, e.g., (Mak 1991; Zheng and Chow
1993; Vaughan et. al. 1991). However, most systems don’ t offer
support for hierarchical systems. This makes it difficult to imple-
ment reusable submodels, and components that can be further

refined as the design evolves. As we have already pointed out,
these are essential features for simulating complex systems.

This paper describes a general purpose simulation library that
has already been used extensively for the simulation of complex
communication systems. It tries to narrow the gap between the
problem domain and implementation by using high-level abstrac-
tions. Therefore, users can easily map their simulation models to
actual simulation programs. The library can be easily extended

“because it is written in standard C++. The implementation takes

advantage of the latest additions to the C++ language, namely
templates and the exception handling mechanism (Ellis and
Stroustrup 1990). It uses few basic abstractions and emphasizes
a clean software architecture. Hierarchical system decomposi-
tion is supported, and it is even possible to write distributed simu-
Jation programs. Strict encapsulation with clean interfaces be-
tween model components enables massive reuse of simulation
models. A detailed description of the simulation library can be
found in (Kocher 1993).

2 AN OBJECT-ORIENTED SIMULATION
LIBRARY

2.1 Software Architecture

The following section describes the overall software architecture
of the simulation library. Figure 2.1 shows a typical system. Two
main parts can be distinguished. The simulation support subsystem
contains all components that are necessary to control the execu-
tion of a simulation program. It also contains classes that sim-
plify the development of simulation programs, like a modular
T/O concept. It is further described in Section 2.5.

Simulation Support

t Output Port input Port

Model

>\ Entity -
[eatlf——]
oo

L. ey

Figure 2.1: System Overview

Entity

The main part of the system is the simulation model. The
simulation model can be hierarchically decomposed in submodels
and in model components. The latter are called entities. Entities
communicate with each other by exchanging messages. All mes-
sages are derived from an abstract base class that defines some
common properties, €.g., the message type. Contents and mean-
ing of a message are user defined. Each entity can evaluate only
those aspects of a message which it is interested in.

A port mechanism is used for communication. Transferring
messages between entities is as simple as connecting the input
and output ports of these entities. A handshake protocol ensures
that both entities are ready to exchange messages before they are
actually sent. Entities can be seen as black boxes that communi-
cate with the outside world using ports. This strict encapsulation
allows separation of the behavior of an entity from the structural
arrangement within the model. Therefore, it is easy to insert a
new entity between existing entities without modifying the exist-
ing ones.

Our simulation library is based on an event-driven paradigm.
We selected this approach over a process-oriented paradigm be-
cause it was clear how a hierarchical event concept should work,
whereas we could not come up with a suitable definition of hier-
archical processes. In event-driven simulations, events are used
to plan future activities. Events are entered in a sorted event list
and processed later. The meaning of an event depends on the en-
tity that generated it. Events are passed to the entity for process-
ing. The entity might process the event itself, or may pass it on to
its parent entity. This supports hierarchical processing of events.

Amodel entity is a special entity that has a built-in event list.
Usually, the model entity stays at the top level of the simulation
model hierarchy. Since a model may be composed of more than
one submodel, the library supports more than one event list. The
submodels are responsible for synchronizing distributed event
lists.

The following sections describe the above-mentioned mecha-
nisms in more detail.

2.2 NModel Components

A simulation model can be seen as a network of model compo-
nents, which we call entities. All entities are derived from a base
class TEntity that defines the common properties of all entities.
An entity has a local name, which can be chosen arbitrarily. A
global name can be formed by chaining the local names of all
owning entities, just like path names in a file directory tree. Names
are mainly used for identifying entities in error messages during
program development, and for I/O-purposes. TEntity also defines
methods for dealing with ports and events.

Decomposing a model into a hierarchy of entities is an im-
portant means to reduce overall complexity. Therefore, we spent
a lot of effort to come up with a useful concept. Each entity can
contain other entities internally. If this principle is applied recur-
sively, it leads to a tree structure of entities with the model entity
as the root. Each entity has a reference to its parent entity. Figure
2.2 depicts a simple quening model that shows two network nodes
in a communication system. Each node consists of an input queue
and a server entity. Figure 2.3 shows the resulting object tree us-
ing the notation of (Booch 1991; Booch 1992). The mapping from
the components of the simulation model to the implemented en-
tities is straightforward.

TestModel
Node 1 Node 2 :
~ Queue Server Queue

|11 |1]

Figure 2.2: Simulation model of a simple queuing system

TestModel

Figure 2.3: Object diagram of the simulation model

On one hand, an entity is a model component; therefore, it
has to be derived from TEntity. On the other hand, it may contain
other entities. These may be defined as class members and ini-
tialized in the constructor, or they may be created dynamically
depending on some input parameters. Figure 2.3 shows such a
containment hierarchy.

Obviously, it is not enough to just support nesting of entities.
The more interesting part is how they interact. An important as-
pect of this is the coupling between entities in different layers of
the hierarchy. In order to ease the reuse of entities, the coupling
should only be as close as absolutely necessary. This can be
achieved by following a few simple rules.

During initialization, each entity gets a reference to the par-
ent entity. Because it does not know the exact type of the parent,
it can only use services that are already defined in the base class

TEntity. Because of polymorphism, the behavior of those services
still depends on the actual type of the parent entity. That way,
many services can be delegated to parent entities without know-
ing the structure of the containment hierarchy. Whereas child
entities may only use anonymous services of the parent entity,
parent entities do know all child entities. Therefore, they are al-
lowed to call all methods of their children directly without sacri-
ficing encapsulation. This is the most important principle of the
simulation library. It guarantees loosely coupling between enti-
ties, and therefore supports independent reuse of entities and whole
submodels in different applications. As will be shown in later
sections, delegation is used in many places. Polymorphism to-
gether with delegation is the key to a flexible library, because it
allows to change the behavior of the system dynamically without
breaking encapsulation. To add new functionality, a new class

* with a different implementation is derived. Because the interface

doesn’t change, it is simply a matter of replacing some objects to
get a completely new behavior.

2.3 Port Concept

The port concept is used to pass messages between entities. To
improve type safety, input and output ports are distinguished. All
connections are unidirectional point-to-point connections between
two ports. Ports are registered with their owning entity during
construction. Ports may be defined as member objects of the
owning entity, or they may be created dynamically. The latter is
useful for general purpose components like multiplexers, where
the number of input ports depends on the simulation model. Two
ports can be connected by calling the Connect method of the
TEntity class. This method also checks if a connection is legal.

All messages must be derived from a common base class
TMessage. The content of a message depends on the simulated
problem and can be defined in derived classes.

/W Messagelndication InputPort
—_—
. -————
IsMessageAvailable
GetMessage

Figure 2.4: Handshake protocol between ports

Messages are passed between ports using a handshake pro-
tocol. This is shown in an object diagram in Figure 2.4. After an
entity notifies an output port that a new message is available the
port calls the Messagelndication method of the corresponding
input port. The receiving entity can then decide if it is willing to
accept the message. It can do so by calling the GetMessage method
of the port. If it is unable to receive a message in the current state,
it may simply ignore the call. In this case, the sender is blocked.
Later, the receiving entity may call IsMessageAvailable to find

out if there are messages to receive, and call GetMessage to actu-
ally receive them.

This simple protocol adds a lot of flexibility because entities
don’t have to know how messages are created or utilized, or if
the receiving entity is in a state where it can accept new mes-
sages. Because of this loose coupling between ports, it is always
possible to insert new entities between existing ones without in-
fluencing the way messages are transferred. For example, it would
be possible to insert a multiplexer between a queue and a server.
When the server is ready to accept a new message it calls the
IsMessageAvailable method of the multiplexer. Depending on the
polling strategy, e.g., priority, round-robin, etc., the multiplexer
would query all connected input quenes for new messages. Nei-
ther the queue nor the server entity would have to be modified.
This greatly enhances opportunities for reuse because many mod-
els can be changed by simply inserting new entities. Other port
schemes that don’t implement flow control mechanisms are less
flexible because messages cannot be blocked between entities,
e.g., (Mak 1991).

Because entities know their ports, they can reference them
easily, and call port methods directly. Ports also know their own-
ing entity, but they don’t know which method to call in case of a
message indication. Especially, if an entity has more than one
port, all ports would call the same method. Therefore, a class
TMessageHandler was introduced to decouple entities and ports.
A message handler may either handle a message directly, or del-
egate it to the owning entity. Template based message handlers
allow to call arbitrary methods of the entity class in a type safe
manner.

Although it would be possible to create special entities to
count messages, or manipulate them, the overhead would be pro-
hibitive. Message filters that can be installed in every port offer a
more elegant solution for these kind of problems. If filters are
installed in a port all handshake calls between ports are first dis-
patched to all filters before they are sent to the port or a message
handler. Again, template based filters that are derived from the
TMessageFilter class can be used to delegate these calls to other
* classes in a type safe manner. By installing two message filters
that work together, message transfer times between any two ports
can be evaluated.

2.4 Event Handling

Event processing is the core of any event driven simulation pro-
gram. Normally, events are stored in an event list that is sorted by
event time. When the current simulation time matches the event
time, the event is processed. Additionally, the concept presented
here supports hierarchical event handling.

All events must be derived from a common base class TEvent.
Similar to the usage of message handlers and filters, users can
derive their own event classes. Template based classes can be

used to delegate event processing to arbitrary classes, e.g., the
entity class that created the event.

The PostEvent method of class TEntity takes an event and
the event time as parameters. Once an event has been handed
over to an entity, the entity tries to find a suitable event handler
that is willing to handle the event. Event handlers must be de-
rived from the TEventHandler base class. Events have different
types. Event handlers can either handle events of one specific -
type, or of all types. Event handlers may be installed in any en-
tity. First, entities search their own handlers to find one that is
willing to handle the event. If none is found, the PostEvent method
of the parent entity is called. This technique is applied recursively
until either a suitable handler is found, or the root of the model
hierarchy is reached, which would cause an exception. To im-
prove performance, entities cache the most recently used han-
dler. Hierarchy levels with no registered handlers are skipped
automatically. :

Event handlers may either intercept events, or pass them on
to the next higher level of the entity containment hierarchy. An
event list is just a special case of an event handler that stores
events and processes them later. In order to intercept events not
only when they are posted, but also before they are processed,
handlers may add an embedded event to the current event. When
the ProcessEvent method of the original event is executed, all
embedded events are processed before the original event.

With this concept, the parent entity is able to manipulate all
events of their child entities without modifying the children. There-
fore, this scheme can be used for conventional event processing,
and for anonymous communication between entities in different
hierarchy layers.

Model entities are special entities that include event lists.
The PostEvent method of a model simply inserts the event in the
event list. The simulation control class and the model entities
work together to retrieve the next event in the event list, which is
processed by calling its ProcessEvent method. The scenario in
Figure 2.5 is based on the model that was shown in Figure 2.2. It
shows a scenario where an event is posted by the server. Because
no event handlers are installed in the server and network node

" entities, each entity delegates the PostEvent method call to its

parent entity. That way, the event follows the hierarchy up to the
model entity, which inserts the event in the event list. Later, the
event is retrieved and executed. Because submodels may be in-
stalled at any part of the hierarchy, more than one event list may
be used. If event lists are distributed, the models are responsible
for synchronizing them.

Again, delegation and polymorphism are used to add flex-
ibility to the simulation library. Because existing classes do not
have to be modified to add new functionality, they can be more
easily adapted to new uses, thereby greatly enhancing reuse op-
portunities. Also, hierarchical event processing is one of the key

concepts to support distributed simulation almost transparently
(see Section 3.2). Although the concept is easy to understand and
use, we found no other simulation library that supports it.

TestModel

3:PostEventT

1:PostEvent
e
/42:PostEvent

4:PostEvent

5:GetNextEvent
F

\f:ProcessEvem

7:HandleProcessEvent
—_—

Figure 2.5: Hierarchical event handling

2.5 Other Concepts
2.5.1 Simulation Control

The execution of simulation programs must be controlied. The
main tasks are initializing data structures, processing input pa-
rameters, running the simulation, collecting and printing the re-
sults the user is interested in, and finally stopping the simulation.
Our library supplies a set of classes that provides a flexible envi-
ronment for simulation control. It can easily be customized by
overriding selected methods.

It must be emphasized that our environment is useful for both
functional, and stochastic simulation. In the following, we will
concentrate on stochastic simulation because of some additional
requirements that have to be met to get statistically accurate re-
sults. Stochastic simulation is used to evaluate the performance
of a system. In general, a stochastic simulation run consists of

several phases. After launch, the system is in a nonstationary phase

(warm-up period). Then, if the process is stable, it moves asymp-
totically towards a steady state (Pawlikowski 1990). To get sta-
tistically uncorrelated data, the observation process has to be rep-
licated several times. This is usually done by dividing the simu-
lation run into a series of batches. After all batches are finished,
the means, variances, coefficients of variation, confidence inter-
vals, etc., of all interesting measures can be estimated. Note, that

simulation of nonstationary processes is also possible with this
environment. The only change that needs to be made is the use of
special data collection classes (see Section 2.5.2).

TSimulation is an abstract base class that provides virtual
methods to start and stop the warm-up period, batches, and the
whole simulation. The derived class TStdSimulation overrides
these methods and implements the features needed for stochastic
simulation. Additional functionality can be implemented by de-
riving new classes from TSimulation.

It is often necessary for objects to know in which phase
(warm-up, or n-th batch) the simulation currently is, or when the
individual phases start and stop, respectively. For example, at the
end of each batch the characteristic values of ail observations
have to be calculated and all data collection variables must be
reset for the next batch. The class TSimulationControl is provided
for this purpose. All classes that need to be informed of phase’
changes must be derived from this base class. During creation of
a simulation control object, it automatically registers itself with a
global simulation control manager. Whenever the phase changes,
the simulation object informs the simulation control manager
which in turn notifies all registered simulation control objects.

How does the simulation object know when it should pro-
ceed with the next simulation phase? For this purpose, the simu-
Jation object has notification handler objects for each simulation
phase. These notification handlers manage a collection of notifier
objects, which are responsible for detecting the end of a simula-
tion phase. Notifiers could be message counters, timers, or ob-
jects that watch the statistical measurements and stop when a pre-
defined confidence interval is reached. Since each notification
handler is able to manage more than one notifier, several condi-
tions can be combined.

This distributed approach to simulation control adds signifi-
cantly to the overall flexibility of the simulation library.

2.5.2 Support Classes

To further simplify the development of simulation programs, the
library includes a number of useful support classes that will be
briefly. discussed in this section.

Our library provides a hierarchy of random number genera-
tor classes that implement some of commonly used algorithms
(L’Ecuyer 1990). Based on the random number generators, we
implemented a hierarchy of different distributions ranging from
simple uniform, binomial, or poisson distributions, up to sophis-
ticated state-dependent models for video sources that are needed
for simulating broadband communication networks.

In the previous section, we mentioned the collection of
samples and the calculation of characteristic statistical values.
This functionality is provided by a separate class hierarchy where

all classes are derived from a common base class TStatistic. To
be more flexible, the creation of statistic objects is done using a
global manager object. For example, after the user has changed
the properties of the statistic manager all classes that create sta-
tistic objects will automatically use the new properties.

To simplify the collection of sample data during a simula-
tion run, a number of meter classes are provided. These meter
classes can easily be connected to any port of an entity. Currently,
two types of meters can be distinguished, meters that simply count
messages, and meters that measure transfer times, i.e., the time a
message needs to travel from one point of the model to another.
When a meter is attached to a port, it installs a message filter.
Because the filter concept is a basic part of the port mechanism,
no modifications of entities are required. The message filter noti-
fies the meter as soon as a message arrives at the port so it can
count the message, or place a time stamp on it for measuring
transfer times. The measurement regions of different meters may
overlap.

During development of a simulation program, and for func-
tional simulations, the user needs some debugging support. For
this purpose, a sophisticated trace facility that is based on differ-
ent user definable trace levels has been added to the library.

Finally, the I/O mechanisms of the library are presented. For
input of simulation parameters, a parser environment is provided.
The parser reads text from an input stream. If it detects a pre-
defined keyword it reads a value that is assigned to the keyword,
or it invokes other user-defined operations. The parser can be
extended easily so that users can add their own keywords and
operations. This file oriented input has advantages for time con-
suming simulations that can be started in the background and
need no user interaction. If interactive control of the simulation
is desired, an additional graphical layer can be added. This layer
writes the commands in a parser readable form to a temporary
stream which serves as input to the parser. This method has al-
ready been used successfully for functional simulations of com-
munication protocols.

The output of simulation results can be controlled through
usage of styles. A print manager class reads the definitions of
styles from a file. Styles are used to define which values are
printed, the output format for these values, and for printing head-
ers and comments. Actual simulation results are marked by key-
words, and are replaced with current data in the output stream,
similar to mail merge applications. Each entity defines a number
of keywords for the results it can offer. Styles can be defined
hierarchically, so they fit into the hierarchical structure of the
entities. This flexible concept simplifies the reuse of entities or
models, because no code needs to be modified in order to print
results in a different format. After editing the style file, the new
format is in effect immediately without the need to recompile the
simulation program.

3 APPLICATIONS OF THE LIBRARY

3.1 Simulation of a Satellite Communication
System

In the following section, we will describe some insights that we
gained while using the library for the simulation of a satellite
communication system. In addition, we implemented the same
simulation model using a simulation library written in the proce-
dural programming language Pascal. The development process
and the final versions have been compared.

—= SSC
1 = PAC 5
3 SSC g
—— = 3
o L
- OPC |
/
.
» SSC
On-Board Controller (OBC)

Figure 3.1: Block diagram of a satellite switching system

The system we wanted to simulate was a modular satellite
switching system, where a satellite is used to interconnect sev-
eral terrestrial terminals with different communication protocols
(Piontek 1989). Switching inside the satellite is performed by a
multiprocessor system, the so-called ,,On-Board Controller®. Fig-
ure 3.1 depicts a block diagram of the system. The ,,Signalling
and Switching Controllers (SSCs)* are responsible for connec-
tion management, the ,,Path Allocation Controller (PAC)* man-
ages all resources of the satellite, and the ,,Output Processing
Controller (OPC) sends the packets down to the terrestrial ter-
minals. A detailed queuing model of the simulation system is
depicted in Figure 3.2.

The mapping of the queuing model to the simulation pro-
gram is straightforward. A hierarchy of entities can be derived
directly from the model. During the development of the program
another great benefit of the object-oriented approach became
obvious. The library supports an incremental development pro-
cess. Due to the encapsulation of the entities and the framework
which is provided by the library, it is always possible to build a
reduced model which can be tested and simulated separately. Later,
individual entities are combined to hierarchical entities, and their
ports are connected. This has the advantage that an executable
program is available during every stage of the development pro-
cess. The need to integrate a large and complex system in one
step does not exist. Since the individual entities are already tested,
testing of the whole program can be reduced to validating inter-
actions between entities.

ssC ég
O[O O O Ol OO0 O |
i g L =
7
_O
OPC =|| PAC =
Ol _O (? Ol OO (? @]
Satelite .. é ...
1

Satellite Links ©0 -CO Downlink

Uplink Eﬁr-__“_cz
Clock 20 ms-«---!

Terminals A
and B

Figure 3.2: Simulation model of the communication system

During the development of the program, we could heavily
reuse the framework provided by the library. The queues, service
phases, packet generators, and transmission delay entities could
either be used directly from the library, or had only to be slightly
modified. These modifications could easily be accomplished by
deriving new classes from the library entities, and overriding spe-
cific methods. Only very specialized entities had to be imple-
mented from scratch, e.g., the entities that implement the com-
munication protocol. Interestingly, we were able to find useful
generalizations even for those specialized entities. The general-
ized entities were added to the library. Although this may lead to
some additional work, it has two benefits. First, the library be-
comes more complete with every project, which reduces the work
required to build future simulation programs. Second, it leads to
clearer abstractions that makes it easier for developers to under-
stand complex systems. ‘

A comparison of the source code required to implement the
object-oriented simulation program versus the Pascal program
lead to 27% less code in the object-oriented program. If we sub-
tract those parts of the program which could be added success-
fully to the library we end up with 42% less code. Also, the Pas-
cal program was hard to understand because of many case-state-
ments and global variables that were necessary due to functional
decomposition.

To demonstrate improved maintainability, we added some
functionality to the queuing model. Whereas a great deal of effort
was necessary to incorporate the features into the Pascal program,

the object-oriented program was changed within a couple of hours.
Also, because the required modifications affected only a few en-
tities, testing could be limited to these entities. In summary, the
object-oriented solution required less effort, was better structured,
easier to code, test, debug, and maintain.

3.2 Extensions for Distributed Simulation

This section describes briefly the extensions to the library that
enable distributed simulation. Some of the concepts have already
been successfully implemented. In general, we see two different
strategies for implementing distributed simulations. The first one
is to distribute simulation phases to different machines. This works
well for stochastic simulations with a number of batches. The
second strategy is to split the simulation model into several
submodels, and to distribute these to different machines. Both
strategies will be discussed in more detail in the following sec-
tions.

As mentioned above, one possible way to distribute a simu-
lation is to run each batch on a different machine. The simulation
is controlled by an object of a class that is derived from the
TSimulation class. The easiest way would be to start identical
copies of the simulation program on several machines. Each copy
must be initialized with a different seed for random number gen-
eration. At the end of the warm-up period and one or more batches,
the results are collected and evaluated. With its flexible output .
facility, the library simplifies the final evaluation. The distribu-
tion of the copies and the final evaluation can be incorporated in
the simulation control class. No other changes to the simulation
program are required.

If the batches are distributed on different machines, all cop-
ies of the program have to perform the warm-up period. If this
overhead is unacceptable an object-oriented database may be used
to store the system state after the warm-up period. After that, each
process could read the database, set a new seed, and run its batch.
Concluding, we can state that our simulation library can easily be
adapted to support the distribution of batches on different ma-
chines transparently.

The second strategy is to split the simulation model into sev-
eral submodels. All entities of a submode! are connected using
the standard port mechanism. Therefore, each submodel is com-
plete and can be executed sequentially. The communication be-
tween distributed submodels is done by special entities. These
entities must guarantee synchronization. For this purpose, a class
TSyncEntity which provides a special synchronization method carn
be derived from TEntity. This approach has already been applied
successfully to simulate a high speed communication network
with ring topology.

Finally, special port classes may be derived from the stan-
dard ports. These new port classes are responsible for synchro-

nizing entities. Because of the handshake protocol used, the port
mechanism can be distributed easily over a network. This en-
ables the subsequent distribution of a sequential program. Due to
strict encapsulation and the hierarchical concepts in the original
library, important parts of the program can be modified with al-
most no impact on users of the library.

4 SUMMARY

In this paper, we presented a flexible object-oriented simulation
library and some experiences gained from its use. One of the main
concepts of the library is complete support for hierarchical de-
composition of simulation models including hierarchical event
processing. This enables direct mapping of complex simulation
models to simulation programs, and also supports iterative re-
finement of models as the design evolves.

High-level abstractions close the gap between the problem
domain and the actual implementation. Developers can focus on
their simulation problems because the library provides all basic
concepts. The resulting programs are well structured, easy to un-
derstand, and easy to implement. The chosen abstractions are very
flexible and can even be used for distributed simulation. Strict
encapsulation and a clear software architecture support reuse of
model components and whole submodels.

Iterative development of complex simulation programs is en-
couraged because model components can be implemented and
tested separately. The problem of integrating and testing large
portions of code does not exist. Therefore, the time needed for
system integration can heavily be reduced. Furthermore, modifi-
cations are easy to implement because they can be seen as an-
other incremental step in the development cycle. '

REFERENCES

Belanger, R.F. 1990. “MODSIM II: A Modular, Object-Oriented
Language.” In Proceedings of the 1990 Winter Simulation Con-
ference (New Orleans, LA). 118-122.

Booch, G. 1991. Object Oriented Design with Applications. Ben-
jamin Cummings, Redwood City, CA.

Booch, G. 1992. “The Booch Method: Notation.” Rational, Santa
Clara, CA.

L’Ecuyer, P. 1990. “Random Numbers for Simulation.” Commu-
nications of the ACM 33, no. 10: 85-97.

Ellis, M.A. and B. Stroustrup 1990. The Annotated C++ Refer-
ence Manual. Addison-Wesley Publishing Company, Reading,
MA.

Kocher, H. 1993. “Design and Implementation of a Simulation
Library Using Object-Oriented Methods.” Dissertation (Submit-
ted). Institute of Communications Switching and Data Technics,
University of Stuttgart, Germany. [In German].

Mak, V.W. 1991. “DOSE: A Modular and Reusable Object-Ori-
ented Simulation Environment.” In Proceedings of the SCS
Multiconference on Object-Oriented Simulation (Anaheim, CA,
Jan. 23-25). The Society for Computer Simulation, San Diego,
CA. 3-11. :

Melamed, B. and R.J.T. Morris 1985. “Visual Simulation: The
Performance Analysis Workstation”. IEEE Computer 18, no. 8:
87-94.

Pawlikowski, K. 1990. “Steady-State Simulation of Queuing Pro-
cesses: A Survey of Problems and Solutions.” ACM Computing
Surveys 22, no. 2: 123-170.

Piontek, M.; W. Berner; H. Kocher; and M.N. Huber 1989. “Frame
organization and signalling for an antonomous switching satel-
lite.” In Proceedings of the First European Conference on Satel-
lite Communication. Munich, Germany.

Vaughan, P.W.; D.E. Newton; and R.P. Johns 1991. “PRISM: An
Object-Oriented System Modeling Environment in C++.” In Pro-
ceedings of the SCS Multiconference on Object-Oriented Simu-
lation (Anaheim, CA, Jan. 23-25). The Society for Computer
Simulation, San Diego, CA. 32-39.

Zheng, Q. and P. Chow 1993. “EXsim: A General Purpose Ob-
ject-Oriented Environment for Descrete-Event Simulations.” In
Proceedings of the 1993 Western Simulation Multiconference (La
Jolla, CA, Jan. 17-20). The Society for Computer Simulation,
San Diego, CA. 15-21.

