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Abstract—Intent-based networking is increasingly used to
improve network control and management. Network operators
have already begun to adopt this paradigm, which leads to a
simplified and automatized network operation. The operators
can interact with their intent-driven networks through the
Northbound Interface (NBI). Given a standardized NBI, the same
approach can scale to coordinate intent provisioning across multi-
domain networks in a decentralized fashion. This can outdate
traditional decentralized protocols and open new opportunities
for flexible and scalable communication mechanisms. This paper
proposes a minimal and general high-level architecture, relying
on a standard IBN (Intent-Based Networking) architecture, for
multi-domain intent deployment in IP-optical networks. Our
architecture is consistent between diverse network operators that
use the same NBI, respects confidential information, promotes
accountability, and can scale for various network services. To
achieve this, we introduce a hierarchical system-generated intent
schema with automatic intent delegation between the different
domains.

Index Terms—architecture, decentralized, deployment, IBN,
multi-domain, NBI

I. INTRODUCTION

Today’s Internet owes its existence to various decentralized
operations and protocols. However, we have witnessed a
strong urge toward centralized approaches during the last
decade resulting in the Software-Defined Networking (SDN)
paradigm. SDN accumulates the network’s knowledge to make
centralized decisions and separates the control from the data
plane. The Intent-Based Networking (IBN) paradigm comple-
ments SDN as an evolution of the policy-based approaches to
introduce a systematic way of operating a network with intents
as basic building blocks. IBN decouples the implementation
details from the network operator’s desires or intentions, i. e.,
intents. The operator’s intents, e. g., end-to-end (E2E) connec-
tions, can be abstractly defined, while the implementation is
handled automatically from the system internals, respecting all
physical-level constraints like spectrum contiguity/continuity
and maximum optical reach. An IBN Northbound Interface
(NBI) is provided to receive the operator’s intents. The IBN
NBI is the interaction point between the network operator and
the networking system. It serves as the interface to add, mod-
ify, delete and monitor the intents. A common or standardized
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IBN NBI will expand these functionalities to allow interaction
with authorized entities outside the considered network.

As much as centralized approaches can be beneficial, coor-
dination often needs to be achieved across different domains,
e. g., Autonomous Systems. In these cases, all parties must
agree on some common terms while, at the same time, they try
to minimize the amount of proprietary information they share.
Below we mention some possibilities of how decentralized
multi-domain (MD) coordination can be achieved, and we
highlight the advantages of an intent-driven solution:

1) MD IBN: MD IBN inherits all the advantages of the
IBN paradigm by opening up the IBN NBI to users other than
the network owner, like customers, other network operators,
or even machines for future autonomous networks. A well-
engineered IBN NBI is needed to cope with the complexity
of several different users.

2) Proprietary mechanisms: Compared to proprietary
mechanisms, the MD IBN coordination is open to every
system that complies with the IBN NBI. This accelerates
inclusivity among network operators, decreases overall devel-
opment effort, and leads to open networking.

3) Traditional communication protocols: MD IBN provides
flexibility, customization, and fast business plan adaptation,
unlike most traditional decentralized communication proto-
cols, which support limited operations and are hard to upgrade.
For example, new MD communication, like service advertis-
ing, can be defined using special interconnection intents, which
traditional protocols like Border Gateway Protocol (BGP)
cannot support [1].

4) MD SDN: Many approaches have emerged to tackle
decentralized SDN control [2]. The SDN East/Westbound
Interface (EWBI) is used to achieve horizontal control between
the controllers. Although there are many similarities between
MD SDN and MD IBN, adding one additional layer of intent
abstraction can be beneficial. Due to the high-level abstraction,
the IBN NBI can be used for vertical and horizontal commu-
nication. Moreover, IBN comes with a built-in architecture to
handle the intent lifecycle (as explained in Section III and
Fig. 2), which needs only to be expanded for the MD logic.
In contrast, such an abstraction layer must be created from
scratch for the MD SDN; otherwise, low-level access closer
to the devices will be provided to potential competitors. A
visual comparison can be found in Fig. 1.
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Fig. 1. Decentralized coordination.

MD IBN may be, at the time, an immature solution com-
pared to its alternatives, but the above reasons make it highly
promising for the future and very significant for research.
This paper presents a decentralized MD IBN coordination
architecture, assuming a common IBN NBI, for multi-layer
networks, i. e., networks consisting of nodes with an Optical
Cross-Connect (OXC) and IP Router.

II. RELATED WORK

Although there are activities toward developing an IBN NBI
[3]–[7], a standardized interface still does not exist. Velasco
et al. considered MD coordination using an E2E machine
learning-powered IBN service orchestrator [8]. Past work
also examined IBN orchestration across multiple platforms
[9] and across technologically different domains for E2E
Service Function Chain management [10]. There were also
efforts to introduce a distributed IBN architecture by extending
the YANG standard [11]. Moreover, Augé and Enguehard
developed some intent-related algorithms for MD IBN [12].

Our work differs in that we consider decentralized domains
and build an intent architecture that supports MD multi-layer
interoperability. In particular, we employ system-generated
intents [13] to compile a user intent to a hierarchical structure
we call an intent tree. We introduce a process of updating the
intent tree state, and we establish the notion of automatic intent
delegation between domains, assuming the intents are aligned
with the underlying Service Level Agreements (SLAs) as [14]
finds necessary. Although the ideas could be applicable for
more intent types, we showcase a specific intent compilation
strategy for E2E connectivity intents, which are more relevant
to Infrastructure-as-a-Service (IaaS) scenarios.

III. ARCHITECTURE

Our architecture commonly places the IBN framework
above the SDN controller. The IBN framework contains all

the logic and is responsible for the intent-related decisions.
Meanwhile, the SDN controller is treated as a driver, enabling
communication between the IBN framework and the network
devices. The SDN controller translates the requests of the IBN
framework to be device-comprehensible and forwards them.

Fig. 2 illustrates the different stages of an intent. First, the
intent enters the system expressed in an intent language. The
intent language engine uses the IBN NBI to insert the intent
into the IBN framework (Intent Delivery). The IBN framework
processes the intent, generates a potential implementation
(Intent Compilation), and forwards it to the SDN controller
to be deployed in the required devices (Intent Installation).
Continuous monitoring assures that the intent is being satisfied
(Intent Monitoring). When multiple intents require the same
resources, a conflict will be caused. A primitive solution to
deal with this is total intent recompilation in order to, for
example, minimize spectrum fragmentation. The objective of
this work is to focus on the IBN framework.

A. Intent state machine

A fundamental step in developing an intent system is
designing the intent state machine, which ranges from minimal
designs like Fig. 3 to very complex ones.The intent state
machine describes the intent’s status and all possible transi-
tions. Fig. 3 shows that an intent must first be compiled to
get installed. Compiling and Installing are intermediate states
which signify dependence on the child intents in the intent
tree. Compiling indicates that some intent compilation takes
place, and Installing that the intent is already fully compiled
but still not up and running on every device that it should. The
compilation or installation will fail if resources are unavailable
or the intent requirements are not satisfied.

A

B

C

D

E

F

SDN Controller

IBN Framework

Intent Language
Engine

SDN NBISDN NBI

IBN NBIIBN NBI

SDN SBISDN SBI: Southbound Interface: Southbound Interface

connect A with Fconnect A with F

deploy A-C-D-Fdeploy A-C-D-F

Intent DeliveryIntent Delivery

Intent CompilationIntent Compilation

Intent InstallationIntent InstallationIntent MonitoringIntent Monitoring

conflictconflict

Fig. 2. IBN over SDN architecture. Connection A to F is implemented with
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Fig. 3. Intent state machine.

B. Intent tree

Our work is based on the idea of an intent tree, where the
received user intent is the root. Instead of directly compiling
the intent to an implementation, we demonstrate a strategy of
breaking the problem into a series of subproblems with auto-
matic intent generation. Each intent (problem) can be broken
down to system-generated child intents (subproblems) and is
considered installed or compiled when all children are so. This
triggers updates of the parent’s state based on the child’s state.
For example, an intent will be Compiled (Installed) only if all
the descendants are also Compiled (Installed). If at least one
of the descendants is in Compiling (Installing) state, this state
will propagate to all the ancestors. If at least one of the descen-
dants is in CompileFailed (InstallFailed) state, then the parent
can choose, based on the specifics of the implementation,
whether to enter the CompileFailed (InstallFailed) state or the
Compiling state. Entering the CompileFailed (InstallFailed)
state means passing on the responsibility for action to the
parent intent. On the other hand, entering the Compiling state
means handling the problem by locally recompiling the subtree
defined with this node as a root. An example is shown in Fig. 4.

After intent compilation, we get a hierarchical tree structure
of intents, with the intent nodes getting less abstract as we
move away from the root. We call the leaves of the tree
low-level intents. These are device-level intents that serve
to request specific resources and can never be in the Com-
piling, CompileFailed, and Installing states since they have
no children and compilation or installation is trivial. Each
intent can also have several constraints to tune the desired
intent behavior appropriately. For example, constraints can
include availability, latency, or bandwidth requirements. With
this design of gradually concretizing an intent together with the
intent constraints, we can efficiently deal with the abstraction
level that an intent system requires [15].

We currently deal with best-effort connectivity intents,
which correspond to the Routing and Spectrum Assignment
(RSA) problem [16], but similar mechanisms could be built
for other intent-driven services. Since RSA is an NP-hard
problem, instead of solving it jointly, we split it into (i) the
routing and (ii) the spectrum allocation subproblems.We em-
ploy a simplified strategy to our intent system, which for every
ConnectivityIntent, adds a PathIntent to solve the routing using
k-shortest-path and a SpectrumIntent to solve the spectrum
allocation using first-fit [17]. More advanced strategies can be
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Fig. 4. Intent tree state propagation in case of a network fault.

incorporated, but it is not the aim of this study.

C. MD IBN

We scale from single-domain IBN to multi-user MD IBN
by extending the intent tree to span several domains. We
define a special RemoteIntent, which delegates an intent to
another domain by binding the local intent to a new replica
on the remote domain with a parent-child relationship. The



state update properties still hold between the remotely bound
intents because of the parent-child relationship. This way,
intent states can propagate across different domains. However,
the intent tree content is not accessible outside the domain. The
parent intent may delete or create child intents, but it can only
know their states and nothing about their internal information
(e. g., compilation strategy) or descendants. This guarantees
confidentiality across the different domains.

The expansion of the intent tree outside a proprietary
domain is done using a common IBN NBI. Of course, special
permissions and roles must be incorporated into the IBN NBI
to support the above operations securely. We define two roles:
(i) admin, with the ability to set permissions, and (ii) client
with limited permissions as defined by the admin. The admin
would usually be the network owner. The client is whoever
wants to access the network without owning it. Permissions, as
roles, apply per IBN framework instance and include adding,

compiling, (un)installing, resetting, and deleting an intent. The
same user could be an admin to a specific IBN framework
instance but a client to another.

IV. EVALUATION

We evaluated the feasibility of our architecture with a
proof-of-concept simulation of three decentralized domains
and the border nodes being the only shared information. Every
domain is directed from a single IBN framework instance, and
every IBN instance includes two SDN controllers. We issued
numerous connectivity intents under different constraints, and
the appropriate permissions were given to all IBN instances
to add, compile, and install intents to any other intent-driven
domain. All connectivity intents were compiled and installed
successfully. We also simulated link faults that caused some
low-level intents to transition to the InstallFailed state, trig-
gering intent recompilation and reinstallation.
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Fig. 5. Decentralized MD IBN intent deployment and the intent trees. Spectrum contiguity and continuity are respected since the same frequency slots (FS)
are allocated across the optical connections. The hidden part of each NodeSpectrumIntent is the same as its visible pair.



Fig. 5 illustrates an example where the intent trees are gen-
erated when issuing to IBN1 a MD ConnectivityIntent between
nodes 1.2 and 3.6 with 5ms latency and 75Gbps bandwidth
requirements. Node x.y signifies the y-th node of the x-th IBN
domain. Overall, the IBN1 compiled the intent by subdividing
it into two ConnectivityIntents, one implemented locally while
the other delegated to the neighboring domain. The current
intent compilation strategy performs signal regeneration in the
IP layer at every border node, i. e., nodes 2.1 and 3.2. The
selection of the border nodes and the neighboring domain
is based on the specifics of the deployed implementation
algorithm, i. e., the operator’s decision-making process.

We observe that PathIntents and SpectrumIntents compile
down to low-level intents, i. e., NodeRouterIntents requesting
IP router ports and NodeSpectrumIntent pairs requesting fiber
spectrum slots for each node participating in the link. However,
the IBN instance cannot control the neighboring domain for
the inter-domain links, and a BorderIntent is generated instead,
creating remote low-level intents for the border nodes. For
example, to use the link between 1.9 and 2.1, the frequency
slots 5, 6, 7, 8, 9 must be allocated at nodes 1.9 and 2.1. IBN1
creates a NodeSpectrumIntent for the local node 1.9 and a
BorderIntent that will issue a RemoteIntent to IBN2 for 2.1.

We also notice that constraints are propagated altered to the
child intents, depending on whether they are guaranteed to be
already (partly) satisfied by the parents or not. For example,
the latency constraint of 5ms is propagated to one of the
child intents as a constraint of 1ms. This means the parent
guarantees that the intent constraint of 5ms will be satisfied
as long as the child satisfies the intent constraint of 1ms.
We only consider propagation delay here since it is the main
contribution of total latency in large-scale high-performance
transport networks [18]. The PathIntent can decide if the delay
constraint is satisfied since it knows the path. If it is satisfied,
there is no reason to propagate the constraint further down
to the child intents. If it is not satisfied, then the intent state
will transition to CompileFailed. If it is generally unknown
whether the constraint is satisfied, the intent will transfer the
constraint to the child intents unaltered.

When all the IBN instances successfully compile and install
the system-generated intents, the E2E connection will be
available. If one of the IBN instances does not stand up
to the requirements of an intent, this will be spotted from
the monitoring procedure, which will update the state of the
corresponding intent to InstallFailed, making it clear whom
to hold responsible. Such monitoring promotes accountability
and conformity with the intent requirements.

V. CONCLUSIONS

We presented an architecture for adopting IBN in MD co-
ordination, and we showed a novel strategy to compile multi-
layer connectivity intents using hierarchical system-generated
intents. Our approach focuses on scenarios of decentralized
control, where each party has partial knowledge of the global
network. We underline the importance of a common IBN NBI
and hope to inspire future efforts toward standardization.
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