SIMULATION UND TEST DES D-KANAL PROTOKOLLS

ERWIN P. RATHGEB
Institut für Nachrichtenvermittlung und Datenverarbeitung
Universität Stuttgart

HONG LINH TRUONG, WERNER KIRCHNER
Standard Elektrik Lorenz AG, Stuttgart

ZUSAMMENFASSUNG

1. EINLEITUNG

Entsprechend dem OSI-Referenzmodell kommen für das Signalisierungsprotokoll im D-Kanal die drei unteren Schichten zur Anwendung. In der Schicht 1 wird neben den elektrischen und physikalischen Eigenschaften der S-Schnittstelle ein Mehrfach-Zugriffsv erfahren definiert, welches die gemeinsame Benutzung des D-Kanals durch mehrere Endgeräte ermöglicht.

In der Schicht 3 sind neben den Signalisierungsprozeduren für den Aufbau und Abbau von Nutzkanalverbindungen ebenfalls die Prozeduren für die Benutzung und Steuerung von Dienstmerkmalen definiert.

Die obige kurze Beschreibung des D-Kanal-Protokolls hebt deutlich die Komplexität des Protokolls und daraus folgend die Notwendigkeit für Methoden und Einrichtungen zum Testen dieses Protokolls hervor. Nicht nur die Hersteller müssen ihre ISDN-Komponenten während der Entwicklung testen, auch die Netzbetreiber benötigen entsprechende Geräte
Diesem Punkt noch eine weitergehende Flexibilität erforderlich ist, dann kann man auch einen einfachen Kodierer/ Dekodierer für (N-1):ASP's verwenden, was aber bedeutet, daß die Tests bis hinunter auf die Ebene dieser Primitive spezifiziert werden müssen. Dadurch werden die Testspezifikationen entsprechend umfangreicher weil die Funktionalität der Schicht (N) nicht benutzt werden kann.

Der Upper Tester für die obere Schnittstelle wird je nach Testmethode entweder in das zu testende System eingebaut (Distributed Testing) oder auf dessen Benutzeroberflächen aufgestellt (Remote Testing). Im letzteren Fall ist der Upper Tester oft ein menschlicher Benutzer, der die Schnittstelle bedient. Soll jedoch nach der verteilten Testmethode getestet werden, dann wird als Upper Tester eine dem Testreiter des Lowere Trägers ähnliche Einheit verwendet, bei der besonders darauf geachtet werden muß, daß sie leicht in das Zielsystem integrierbar ist.

Bei heutigen Kommunikationssystemen laufen bestimmte Ereignisse sehr schnell ab. Es kann deshalb nötig sein, beide Teile des Testsystems sehr eng zu synchronisieren. Dazu können, wenn sich beide Teile räumlich nah beieinander befinden, eigene Synchronisations- und Steuerleitungen verwendet werden. Andernfalls müssen aufwendigere Methoden eingesetzt werden, so z.B. der Aufbau einer zusätzlichen Verbindung über die unteren Schichten unter Umgehung der Schicht (N) im zu testenden System.

3. DIE TESTFÄLLE FÜR DIE SCHICHT 3

Im Rahmen der Entwicklung des ISDN-D-Kanal-Simulators wurden Testfallsammlungen für alle drei Schichten des D-Kanal-Protokolls erstellt. Da die Schicht 3 bei weitem die komplexeste dieser Schichten ist, sollen an ihr in diesem Abschnitt einige Aspekte der Testfälle definition diskutiert werden.

Die Spezifikation des Protokolls in verbaler Form schloß von Anfang an die Anwendung formaler Methoden zur Erstellung der Testfälle weitgehend aus. Die verbale Protokollspezifikation hat auch die Entscheidung über die Strukturierung der Testfälle entscheidend beeinflußt. Für eine Orientierung der Testfälle an den Zuständen und Übergängen des Protokollautomaten (wie z.B. in [5]) ist eine entsprechende formale Spezifikation als Basis notwendig, die darüberhinaus auch noch als zwingende Implementierungsvorschrift festgelegt sein muß.

Da dies nicht der Fall war, wurde ein funktionsorientierter Ansatz gewählt, bei dem in jedem Testfall eine bestimmte Funktion, z.B. ein ordnungsgemäßer Verbindungsaufbau unter festgelegten Randbedingungen, getestet wird.

3.1 Die Strukturierung der Testfälle

Die Testfälle sollten sowohl den Test von Endgeräten und Nebenstellenanlagen (vermittlungsseitig) als auch den Test von Vermittlungsstellen erlauben. Durch die starke Unsymmetrie im Protokoll zwischen Endgeräte- und Vermittlungssseite war es in den meisten Fällen nicht möglich, die Testfälle für eine Seite einfach zu "spiegeln", um diejenigen für die andere Seite zu erhalten. Deshalb wurden vier Grundkonfigurationen definiert, für die jeweils eigene Testfälle erstellt wurden:

1.) Der Tester simuliert eine Vermittlungsstelle (Exchange Termination), es wird eine Endgerätestrandimplementierung getestet.
2.) Der Tester simuliert eines oder mehrere Endgeräte, es wird eine Vermittlungsstelle getestet.
3.) Der Tester simuliert eine Vermittlungsstelle, es wird die Vermittlungsseite einer Nebenstellenanlage getestet.
4.) Der Tester simuliert die Vermittlungsseite einer Nebenstellenanlage, es wird eine Vermittlungsstelle getestet.

Aus diesen Überlegungen ergab sich die folgende Einteilung der Testfälle für jede der Konfigurationen:

Tests für die ruhende Seite Hier werden die Funktionen für eine einfache Verbindungserstellung auf der ruhenden Seite getestet. Die Tests umfassen die Varianten für den vollständigen und unvollständigen Verbindungsaufbau sowie für den Verbindungsaufbau.
Tests für die getestete Seite Diese Tests entsprechen denen auf der ruhenden Seite, es wird jedoch zusätzlich der Einfluß mehrerer auf einen Ruf antwortender Endgeräte berücksichtigt.
Tests für die Benutzung der Dienstmerkmale Hierbei werden alle Funktionen getestet, die über die normale, vom Telefon her bekannte Verbindungssteuerung hinausgehen.

Es soll noch darauf hingewiesen werden, daß es sinnvoll ist, die Tests in der oben ausgegebenen Reihenfolge auszuführen, da die höheren Funktionen ein einwandfreies Funktionieren der Grundfunktionen voraussetzen.
4. DEN ISDN-KANAL SIMULATION

4.2 DEN-Funktionen

Die ISDN-Kanalfunktionen basieren auf den Funktionen von ISDN. Die wichtigsten Funktionen sind:

- E1-Frame-Extension
- E1-Frame-De-Extension
- E1-Frame-Identification
- E1-Frame-Adjustment
- E1-Frame-Channeling
- E1-Frame-Transmission

Die Funktionen ermöglichen die Simulation des ISDN-Kanals mit den erforderlichen Funktionen der ISDN.

Informationen zur ISDN-Kanalfunktionen finden Sie in der Dokumentation der ISDN-Kanalfunktionen.
4.2 Die Simulatorkonfiguration

Der Simulationsrechner (Bild 4) besteht aus einem Mikrorechnersystem mit einer 15 MHz CPU und 2 MB Hauptspeicher. Zur Speicherung des Betriebssystems, der Anwenderprogramme und der Test-Datenmodelle (Testfälle) steht eine 71 MB Winchesterplatte zur Verfügung, ein 95 MB Kassettenbandlaufwerk erlaubt die Sicherung und Übertragung der Daten. Zum Kaltstart des Systems und zur Erstellung von Ausdrucken wird ein Druckerterminal verwendet.

Bild 4: Die Simulatorkonfiguration

Zusätzlich enthält der Simulator noch ein eigenständiges Ein-/Ausgabesystem, das ebenfalls über eine 15 MHz CPU und einen eigenen Speicher, sowie über einen HDLC-Baustein und 2 DMA-Kanäle (zur Verbindung mit dem Hauptsrechner) verfügt.

An den Simulator können über parallele Schnittstellen bis zu zwei voneinander unabhängige "Adapter-Probe" zu Anschaltung an die gewünschten Schnittstellen (SB, STM, UPM) angeschlossen werden, die über separate Bedienerterminals gesteuert werden. Eine weitere wesentliche Funktion der Probe besteht darin, die B- und D-Kanäle zu trennen und zum Anschluß anderer Meßgeräte zugänglich zu machen.

Externe Standardschnittstellen (V.24, IEC-625/IEEE) erlauben die Anschaltung weiterer Testeinrichtungen, eine automatische Steuerung des Simulatoreinsatzes oder die Einspielung von Testfall-Dateien.
4.2 Die Schaltzuordnung des Stundenplans
5. ZUSAMMENFASSUNG UND AUSBlick

Der in diesem Bericht vorgestellte "ISDN D-Kanal Simulator" bildet zusammen mit dem umfangreichen Angebot an bereits implementierten Testfällen ein wirkungsvolles Hilfsmittel zur Prüfung und Bewertung von ISDN D-Kanal Implementierungen.

Der Simulator und die Testfälle können nicht nur von den Herstellern von ISDN-Komponenten in der Entwicklung und in der Qualitätsicherung eingesetzt werden, sie werden insbesondere auch von der Deutschen Bundespost im Rahmen des ISDN-Pilotversuchs zur Zertifizierung der entsprechenden Geräte verwendet.

Um dem Ziel eines wirklich "offenen" Kommunikationssystems näher zu kommen, müssen in Zukunft nicht nur die verwendeten Protokolle, sondern schrittweise damit auch die Testmethoden und Testabläufe international vereinheitlicht werden. Dadurch wird es dann für Hersteller und Netzbetreiber möglich werden, mit Geräten wie dem hier vorgestellten, die Kompatibilität aller Netzkomponenten sicherzustellen und damit einen sicheren Betrieb des Netzes zu ermöglichen.

LITERATURANGABEN