introduction
Voice-over-IP protocols: H.323 & SIP
HW architecture
SW architecture
lessons learned
future activities
The VoIP Story (199x)

- VoIP hype in 1995 - 2001
- CAPEX reduction
 - one infrastructure for voice and data
 - routers + LAN switches cheaper than TDM switches
- OPEX reduction
 - auto configuration
 - simplified operation
- new business opportunities
 - unified messaging, integration

VoIP Now (2002)

- CAPEX reduction difficult:
 - TDM equipment cheap
 - LAN infrastructure re-use only in new buildings
 - QoS: VoIP requires managed IP NWs
- traditional Telcos: OPEX not only influenced by technology
- new Telcos: tight financial situation
- new apps delayed: acceptance problems
=> investments in VoIP behind initial expectations
Siemens VoIP Activities

H.323 Protocol Components

- H.323 Terminal
- H.323 Gateway
- H.323 Gatekeeper
- Packet Based Network
- N-ISDN
- B-ISDN
- Guaranteed QOS LAN
- GSTN
- V.70 Terminal
- H.324 Terminal
- Speech Terminal
- H.322 Terminal
- Speech Terminal
- H.320 Terminal
- Speech Terminal
- H.321 Terminal
- Speech Terminal

Scope of H.323

Siemens Corporate Technology
H.323 Stack

- **Audio I/O**
- **System Control/User Interface**
- **H.323**
 - RAS (gatekeeper protocol)
 - Q.931 (call signaling)
 - H.245 (media control)
 - RTP/RTCP
 - UDP
 - TCP
 - IP
 - LAN interface

H.323 vs. SIP – Overview

<table>
<thead>
<tr>
<th></th>
<th>H.323</th>
<th>SIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>monolithic</td>
<td>modular</td>
</tr>
<tr>
<td>Complexity</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Functionality</td>
<td>everything included (signaling, codec ..)</td>
<td>signaling and control</td>
</tr>
<tr>
<td>Transport Protocol</td>
<td>UDP and TCP together</td>
<td>UDP or TCP</td>
</tr>
<tr>
<td>Expandability</td>
<td>ITU like</td>
<td>IETF like</td>
</tr>
</tbody>
</table>

Siemens Corporate Technology
The OpenH323 Project

- Open Source (MPL)
- pushed by Equivalence and Vovida
 - Equivalence Pty Limited was acquired by Quicknet 09/2000
 - Vovida Networks, Inc was acquired by CISCO 09/2000
- libraries and clients for Linux and Windows
 - e.g. graphical / CLI based voip clients
 - OpenH323: class library for H.323 protocol
 - OPAL: OpenH323v2 library
 - H.323 Gatekeeper and MCU software
- support for Linux kernel telephony driver

Motivation for a LAN Phone

- gain experiences in rapid prototyping
- HW platform
 - for evaluation, development and presentations
 - look-and feel of standard-phone
 - modular and extensible hardware
 - off-the-shelf PC like hardware
- SW platform
 - build knowledge on “embedded” Linux
 - gain experience with OpenH323 and VoIP in general
VIP – Voxilla Internet Phone

- CPU 486/66 Mhz
- 16 MB RAM
- 16 MB Flash ROM
- duplex audio
- network interface
- serial interface/LCD

Hardware Architecture

AMD 486 with sound onboard (133 Mhz, 32 MB)

- PCMCIA module
 - network IF
 - flash memory

- PC/104
- RS-232
- four wire

- audio I/O
- display
- keyboard

Siemens Corporate Technology
HW Development Environment

Software Architecture

- **user interface**
- **LDC.tcl**
- **wrapper**
- **LDCd**
- **client (e.g. H.323)**
- **standard libraries**
- **Linux kernel**
 - device driver: network, sound, serial, ...

free software
Linux OS - tomsrtbt

tomsrtbt stands for:
- "Tom's floppy which has a root filesystem and is also bootable."

Linux-On-A-Disc with:
- 2.0.36 kernel, libc5, bunch of rescue tools
- modified for VIP
 - 2.2.10 kernel, libc6, pthreads …
 - full-duplex ALSA audio, new PCMCIA pack
 - tclsh 8.0

SIP Extension

SIP signaling with sipc
- communication with SIP redirect, proxy and registration servers
 - available for Windows, Linux and Solaris

robust Audio Tool (RAT) as audio application
- used without GUI

additional development
- wrapper for sipc for adaptation to VIP user interface
- minor modifications to use RAT without GUI

phone can now operate in H.323 and SIP mode
Lessons Learned (I)

-experiences
 - getting the system to boot is half the work
 - having the system on PCMCIA flash is a good idea
 - trouble with the sound system: use ALSA instead of OSS!

-project data
 - manpower: diploma thesis + internship
 - timeframe: 7 months diploma thesis + 2 months internship

-advantages of Linux-based approach
 - community support: tomsrft, bootstrap, ALSA
 - tons of archived discussions and private web pages

Lessons Learned (II)

- Linux OS
 - boot and init process, system layout
 - pcmcia package: tools, drivers, configuration
 - problem analysis

-modular design paid off
 - TCL script wrapper allowed quick design/testing
 - during internship extension with SIP and RAT

-user interface design is really hard work
 - limited by two line LCD and 12 button keyboard
 - be prepared for all different cases of user intervention
Voxilla Internet Phone

Future Activities

- extend to video phone, voice controlled phone …
- deployment in QoS testbed
- deployment in IPv6 testbed
- deployment in Ad-Hoc testbed
- build a commercial product 😊
 - estimated costs about 200 USD