Quality of experience optimized scheduling of YouTube video streaming

Florian Wamser, Tobias Hossfeld
florian.wamser@informatik.uni-wuerzburg.de

University of Würzburg
Trend towards Quality of Experience

▸ Keep customers happy, attract new customers
⇒ Improving subjective quality perception of end-users

▸ Shift from Quality of Service (QoS) to Quality of Experience (QoE)
 • QoS: packet loss, delay, jitter, …
 • QoE: subjective experience/satisfaction of users of a service

▸ Example: web user interested in short page load times
 VoIP user interested in speech quality
 video user interested in video quality and smooth playout w/o interruptions

▸ What are key QoE influence factors and appropriate QoE models?
▸ How to control QoE? How to optimize QoE?

Quality of experience optimized scheduling of YouTube video streaming
QoE optimized scheduling of YouTube

1) How to model YouTube Quality of Experience?
2) What are requirements for optimal video transmission with respect to QoE?
3) Utilizing buffered YouTube playtime for QoE-oriented scheduling in OFDMA Networks.
QoE issue: waiting, waiting, waiting…

Quality of experience optimized scheduling of YouTube video streaming
Key influence factors on YouTube QoE

- Derive key influence factors on QoE
 - Interesting: no correlation of QoE and
 - video characteristics like resolution, type of content, ratio of audio/video, etc.
 - users preference, whether they liked video
 - demographical features

- Stalling frequency and stalling duration determine the user perceived quality
YouTube QoE model

- Lab studies with UniWue’s CrowdSourcing and at FTW’s i:Lab
- Mapping functions between MOS and stalling pattern, i.e. event length and the number of stalling events, are provided

Users only accept almost no stalling or only short stalling
1) How to model YouTube Quality of Experience?

2) What are requirements for optimal video transmission with respect to QoE?

3) Utilizing buffered YouTube playtime for QoE-oriented scheduling in OFDMA Networks.
Video bit rate as information

- Stalling occurs, if video bit rate $V > B$

- No stalling although $V > B$
 \Rightarrow reason: initially buffered video data (and actual video duration)

- Stalling sometimes occurs, if $V < B$ \Rightarrow reason is variability of video codec

\Rightarrow Video bit rate as only information is not sufficient to avoid stalling
Scene changes have to be considered!

- Scene changes may lead to significant changes of video bitrate

- Options for improved approximation
 - Statistical description of frame sizes per scene
 - Complex frame size models taking into account correlations across scenes

But: YouTube videos are short!

- Specify sizes of all frames in meta information of video file
- Statistical approximation of video characteristics
Buffered playtime as information

Feedback application information: buffered playtime of the player

YouTube playtime buffer

- Trying to keep β over a certain limit
 \Rightarrow no stalling

Quality of experience optimized scheduling of YouTube video streaming
1) How to model YouTube Quality of Experience?
2) What are requirements for optimal video transmission with respect to QoE?
3) Utilizing buffered YouTube playtime for QoE-oriented scheduling in OFDMA Networks.
Scenario: Improving YouTube download quality

Utilizing buffered playtime for scheduling decision

Quality of experience optimized scheduling of YouTube video streaming
Simulation

<table>
<thead>
<tr>
<th>Layer</th>
<th>Client</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>YouTube Flash Player</td>
<td>YouTube Download Server</td>
</tr>
<tr>
<td>Transport</td>
<td>TCP (TCP New Reno including</td>
<td></td>
</tr>
<tr>
<td></td>
<td>slow start and congestion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control)</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>Simple fixed MAC layer packet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fragmentation,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simple packet retransmissions</td>
<td></td>
</tr>
<tr>
<td>MAC</td>
<td>LTE Downlink Link Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simulator, Vienna University</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of Technology, LTE Release 8</td>
<td></td>
</tr>
<tr>
<td>Phy</td>
<td>Error-free signalling and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control channels</td>
<td></td>
</tr>
</tbody>
</table>

Quality of experience optimized scheduling of YouTube video streaming
Application unaware scheduling

Case 1 – Application unaware

- Fair share with respect to network throughput
- Download performance: good
- YouTube quality: bad

Throughput 1.4 MHz LTE, round robin scheduler

Quality of experience optimized scheduling of YouTube video streaming
Application unaware scheduling

Case 2 – Application *unaware*

- YouTube + 1, 5, and 12 web users
- Statistical web user model: one main object, # embedded objects
- YouTube quality good for 1-5 users
- YouTube quality bad for 12 users

Throughput

```
(1 web user)
(5 web users)
(12 web users)
```

Quality of experience optimized scheduling of YouTube video streaming
Utilizing YouTube playtime buffer

Case 3 – Application aware
- YouTube + 12 web users
- YouTube is prioritized in case of low YouTube buffer
 - E.g. buffered playtime $\beta < 15$ s
 - YouTube is playing fine
 - Download performance only marginally influenced

Quality of experience optimized scheduling of YouTube video streaming
Intelligent access control & schedules

- Future Work: Impact on other users
- Here: impact on web users
- Application aware: Utilizing YouTube playtime buffer

Quality of experience optimized scheduling of YouTube video streaming
References

Journal Articles
Tobias Hoßfeld, Florian Liers, Raimund Schatz, Barbara Staehle, Dirk Staehle, Thomas Volkert, Florian Wamser
Quality of Experience Management for YouTube: Clouds, FoG and the AquareYoum.
PIK - Praxis der Informationverarbeitung und -kommunikation (PIK), 2012.

Barbara Staehle, Florian Wamser, Matthias Hirth, David Stezenbach, Dirk Staehle
AquareYoum: Application and Quality of Experience-Aware Resource Management for YouTube in Wireless Mesh Networks.
PIK - Praxis der Informationsverarbeitung und Kommunikation, 2011

Conference Articles
Tobias Hoßfeld, Sebastian Egger, Raimund Schatz, Markus Fiedler, Kathrin Masuch, Charlott Lorentzen
Initial Delay vs. Interruptions: Between the Devil and the Deep Blue Sea.
QoMEX 2012, Yarra Valley, Australia, July 2012.

Tobias Hoßfeld, Raimund Schatz, Michael Seufert, Matthias Hirth, Thomas Zinner, Phuoc Tran-Gia
Quantification of YouTube QoE via Crowdsourcing.
IEEE International Workshop on Multimedia Quality of Experience - Modeling, Evaluation, and Directions (MQoE 2011), Dana Point, CA, USA, December 2011

Barbara Staehle, Matthias Hirth, Rastin Pries, Florian Wamser, Dirk Staehle
Aquarema in Action: Improving the YouTube QoE in Wireless Mesh Networks.
Baltic Congress on Future Internet Communications (BCFIC), Riga, Latvia, February 2011

Florian Wamser, Barbara Staehle, Rastin Pries, David Stezenbach, Sebastian Deschner, Dirk Staehle
YouTube QoE-Aware Gateway Selection in Future Wireless Networks.
EuroView2010, Würzburg, Germany, August 2010.

Barbara Staehle, Matthias Hirth, Rastin Pries, Florian Wamser, Dirk Staehle
YoMo: A YouTube Application Comfort Monitoring Tool.
New Dimensions in the Assessment and Support of Quality of Experience for Multimedia Applications, Tampere, Finland, June 2010

Research Report
Tobias Hoßfeld, Thomas Zinner, Raimund Schatz, Michael Seufert, Phuoc Tran-Gia
Transport Protocol Influences on YouTube QoE.

Quality of experience optimized scheduling of YouTube video streaming