The LENA Project

a product-oriented open source LTE/EPC Network Simulator based on ns-3

Nicola Baldo <nbaldo@cttc.es>
About the project

• CTTC working with Ubiquisys, the leading femtocell manufacturer

• Objective: develop a common platform for LTE femto/macro cell vendors to evaluate their different solutions
 • e.g., make sure that large and small cells from different vendors will work harmoniously before they are deployed
 • Open Source to foster adoption and contributions
 • Based on ns-3

• Use case: LTE-based Self Organized Networks
 • Need to test SONs algorithms before deployment
 • Ubiquisys made extensive use of simulation to design its first generation of WCDMA intelligent femtocells

• Product –oriented:
 • Real-world interfaces for SON algorithms
 • FemtoForum MAC Scheduler API specification
 • Allow testing real code in the simulator
Current Features

- PHY and MAC for UL and DL
 - frame/subframe structure
 - Ideal control channel
 - Adaptive Modulation and Coding
- Inter-cell interference modeling
- Packet Scheduling
 - FemtoForum MAC Scheduler API
 - Round Robin and Proportional Fair schedulers available
- Abstract RLC model
 - PDU generator with infinite queue
- Simplified RRC
 - UE Attach procedure
 - Bearer setup
- Configuration via ns-3 attribute system
- Output: MAC and RLC statistics
eNB protocol stack architecture

- **global configuration**

- **Radio Bearer setup & mgmt**
- generation of per-flow application data

- multiplexing of Logical Channels into Transport Channels
- Radio Resource Allocation & Scheduling
- Adaptive Modulation and Coding

- handling of frames / subframes
- simulation of signal processing
- Interference calculation
- CQI calculation

- **LteEnbNetDevice**
 - config
 - create and config

- **LteEnbRrc**
- **LteEnbCmacSap**
- **LteEnbMac**
- **LteEnbPhySap**

- **LteEnbRlc**
 - one instance per active Radio Bearer
 - FfCschdSap
 - FfSchedSap
 - FfMacScheduler

- **LteEnbPhy**
 - StartTx ()
 - StartRx ()

- **LteSpectrumPhy**
 - one instance per UE

- **SpectrumChannel**

- **DownLink**
- **UpLink**
UE protocol stack architecture

- Global configuration

- Radio bearer setup & mgmt
 - Generation of per-flow application data

- Multiplexing of logical channels into transport channels

- Handling of frames / subframes
 - Simulation of signal processing
 - Interference calculation
 - CQI calculation

StartRx ()

StartTx ()

LteSpectrumPhy

SpectrumChannel

Downlink

eNB's DL SpectrumPhy

StartRx ()

StartTx ()

LteSpectrumPhy

SpectrumChannel

Uplink

StartRx ()

StartTx ()

LteSpectrumPhy

UEs' UL SpectrumPhy
Testing and Validation: some examples

Unit test: AMC

System test: interference

System tests: RR & PF scheduler performance
run-time performance
Work in progress

- Path loss models
 - Well known models
 - Path loss: OH, ITU-R 1411, ITU-R 1238…
 - Shadowing, fading, building penetration loss
 - Appropriate combination selected at runtime based on the topology
- E-UTRA protocol stack
 - RLC UM & AM
 - PDCP
- EPC Data Plane
 - SGW / PGW
 - S1-U interface
 - GTP over UDP/IP
 - Traffic Flow Templates
Future development

- PHY enhancements:
 - Error model
 - HARQ
 - MIMO

- More EPC features:
 - MME
 - X2 interface
 - Handover support
 - Inter-cell interference coordination support
 - Neighbor Discovery support
Check it out!

• Links:
 • http://www.cttc.es
 • http://iptechwiki.cttc.es/LTE-EPC_Network_Simulator_(LENA)
 • http://www.nsnam.org
 • http://code.nsnam.org/nbaldo/ns-3-lena-dev

• Documentation:
 • User Docs, Design Docs & Testing Docs
 • distributed with source code
 • pdf available
 • API documentation
 • doxygen

• Feedback & contributions welcome!
• Contact: Nicola Baldo <nbaldo@cttc.es>