Cell Spectral Efficiency of LTE-Advanced Relay-Enhanced Cells

Daniel Bültmann, Torsten Andre

ComNets Research Group 08.07.2010
RWTH Aachen University, FB6 ITG 5.2.4 #33
• Motivation

• Calculation of Spectral Efficiencies
 • Peak Spectral Efficiency
 • Cell Spectral Efficiency

• Results for LTE-Advanced Relaying

• Conclusion & Outlook
Motivation

• ITU-R invited organizations to submit 4G (IMT-Advanced) wireless mobile systems to supersede 3G

• 3GPP submitted system proposal LTE-Advanced and self-evaluation report

• Independent Evaluation of proposals
 – Evaluated by 13 groups
 – ComNets is part of WINNER+ evaluation group
 – 12 evaluation criteria
Evaluation of IMT-Advanced criteria

• Peak Spectral Efficiency
 – Foundation for cell spectral efficiency

• Cell Spectral Efficiency
 – Determined by system level simulation
 – Path loss model with randomized LoS/NLoS link conditions

➤ An analytical model for the downlink CSE is developed
Peak Spectral Efficiency Calculation

- FDD/TDD
- Overhead for
 - Reference Signals, Synchronization
 - PBCH, PDCCH
 - PRACH, PUCCH
- MIMO
 - 4x4 (DL)
 - 2x2 (UL)
Peak Spectral Efficiency

- Minimum overheads, 64QAM-1/1, 4x4 MIMO (DL), 2x2 (UL), perfect channel

<table>
<thead>
<tr>
<th></th>
<th>DL</th>
<th>UL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>15.0</td>
<td>6.75</td>
</tr>
<tr>
<td>FDD</td>
<td>16.3</td>
<td>8.5</td>
</tr>
<tr>
<td>TDD</td>
<td>15.8</td>
<td>8.1</td>
</tr>
</tbody>
</table>
Cell Spectral Efficiency

- CSE depends on achievable SINR; from SINR derive throughput

\[\text{THR}_{L3} = (1 - \text{FER}) \cdot \text{THR}_{MAC} \]
SINR Calculation including (N)LOS probability

- Downlink SINR depends on received power of serving cell and all interferers
- Pathloss
 - Either LoS or NLoS link depending on probability conditional on distance \(d \)
 - Shadowing and Fast-fading effects not taken into count
SINR Calculation including (N)LOS probability

- Downlink SINR depends on received power of serving cell and all interferers
- For a given set j of (N)LOS conditions the SINR is given by

$$SINR_j(x,y) = \frac{P_{Rx,LoS}(d_{ServingCell})}{P_{Rx,LoS}(d_1) + P_{Rx,LoS}(d_2) + \ldots + P_{Rx,LoS}(d_{57}) + \eta}$$

- Random (N)LOS conditions results
 - Random Serving Cell
 - Randomized Interference
Analytical Model

- Idea: compute all permutations and determine exact mean SINR
 \[\text{perm}_j = (p_{j,1}, p_{j,2}, \ldots, p_{j,M-1}, p_{j,M}), \quad j = 1 \ldots 2^M\]

- Necessity to weight the permutation by its occurrence probability
 \[p_{\text{perm},j} = \prod_{i=1}^{M} p_i \quad \forall j\]

- Mean SINR
 \[SINR(x,y) = \sum_{j \in \Psi} p_{\text{perm},j} \cdot SINR_j(x,y)\]
Complexity Reduction

- Consider only one tier of interferers
 - Small impact of second tier on SINR in full load

- Evaluation of one cell in center site

- Reduce number of permutations
 - Assume NLoS link for non-permutable radio access points to derive an upper bound
 - Error analysis available
Impact of Reduced Number of Cells

• Simulations show low impact on SINR from reduced number of cells
Frequency Reuse Schemes

- LTE was designed to support reuse-1 power schemes
- Use power mask to alter reuse schemes
 - Split resources in partitions with different power levels
Cell Spectral Efficiency Results

- LTE-R8 SISO, No Relays
- Capacity according to

\[\frac{1}{C_{\text{bit}}^{\text{cell}}} = \frac{1}{A_{\text{cell}}} \sum_{x,y} \frac{1}{\text{bpsym}(x,y)} \]

- Spectral Efficiency

\[CSE = \frac{C_{\text{bit}}^{\text{cell}} C_{\text{net}}}{B} \]

- Requirement: 2.2 bps/Hz/cell
• LTE-Advanced supports Relaying for capacity enhancement and coverage extension
 – Position at 3/4th of the cell radius
 – 256QAM wireless backhaul, error free conditions
 – Cell capacity according to $\frac{1}{C_{\text{composite}}} = \frac{1}{C_{\text{hop1}}} + \frac{1}{C_{\text{hop2}}}$

• Frequency Reuse applied for relays here
 – Base stations and relays use distinct resources
 – Frequency reuse schemes within set of relays
Throughput in Relay Enhanced Cell

- Uniform frequency reuse, one relay per cell
Cell Spectral Capacity for Relay Enhanced Cells

- LTE-A Relaying
- Capacity according to
 \[CSE = \frac{C_{RN}^{bit} \cdot C_{RN.net}^{bit} + C_{BS}^{bit} \cdot C_{BS.net}^{bit}}{B} \]
- Required: 2.2bps/Hz/cell
Conclusion & Outlook

Conclusions
- Introduction of method to derive cell spectral efficiency analytically
 - Applicable to arbitrary scenarios, not only ITU-R M.2135
 - Supports probabilistic LOS/NLOS links
 - Supports frequency reuse schemes, and antenna patterns
- LTE-Advanced fulfills Peak Spectral Efficiency requirement
- Resource Partitioning between Relays needed if more than 1 Relay per sector is deployed

Outlook
- Include realistic model of the wireless backhaul
- Investigate Cell Edge User performance gains
- Optimize deployments (ISD, downtilt vs. relay distance, etc.)
Thank you for your attention!

Daniel Bültmann
dbn@comnets.rwth-aachen.de