The E3 Architecture and Solutions for Cognitive Radio Networks

Jens Gebert
Alcatel-Lucent Bell Labs
Germany

31. Meeting of VDE/ITG
Group 5.2.4 “Mobility in IP-based networks”
Presentation outline

- E3 Overview
- Architecture
- Self-Organization/Self-Optimization
- Flexible Use of Spectrum
- Prototyping Environment
- Cognition Enablers
- Standardization of Cognitive Systems
- Conclusions
E³ is an European Project on End-to-End-Efficiency under the 7th Framework Program of the European Commission, addressing the core of the strategic objective "The Network of the Future"

Top Level Objectives:
- **Cognitive Radio System design**
- **Gradual, non-disruptive evolution of wireless networks**
- **Increased efficiency of wireless network operations**

Project Duration:
End-to End Efficiency

E³ - Partners

Network operators (4)

Alcatel-Lucent
Bell Labs Germany
project coordinator

Equipment manufacturers (6)

Telefonica

Operators

Deutsche Telekom Laboratories

Ericsson

Thales

Nokia

NEC

Toshiba

Bell Labs Germany project coordinator

Academia / research institutes (8)

BUPT

Vrije Universiteit Brussel

UNIVERSITY OF SURREY

IDATE Consulting & Research

UNIVERSITY OF AUCKLAND

Academia / research institutes (8)
Cognitive Radio Aspects: Evolution

- Introducing Reconfigurable, Cognitive Systems in the B3G world:
- Evolution of B3G systems to Cognitive Radio Systems
- Improve utilisation of spectrum and radio resources
 - Dynamic Spectrum Management
 - Support of heterogeneous standards
 - More efficient Joint Radio Resource Management (Short term)
- Reconfigurable Base Stations and Reconfigurable Terminals
- Self-Management and Self-Optimisation of
 - Radio Network Infrastructure
 - Cognitive Devices
- Cognition Support Mechanisms
 - Cognitive Pilot Channel, Spectrum Sensing
The pillars of the architecture

- AEM - Autonomic Entity Management
- CCR - Cognitive Control Radio
- CPC - Cognitive Pilot Channel
- SS - Spectrum Sensing
- RCM - Reconfiguration Control Module
- DSM - Dynamic Spectrum Management
- DSNPM - Dynamic Self-organizing Network Planning & Management
- Self-x-for-RAN - Self-x for Radio Access Networks
- JRRM - Joint Radio Resource Management
- RRM - Radio Resource Management

Self-x pattern applies
Functional Architecture (FA)
Single Operator Case

Terminal

RCM Reconfiguration Control Module

Self-x for RAN Supporting functionalities

JRRM Joint Radio Resource Management

RAT 1 RAT 2 ... RAT n

Network (Operator)

DSM Dynamic Spectrum Management

DSNPM Dynamic Self-organising Network Planning and Management

Self-x for RAN Self-organizing Network functionalities

RCM Reconfiguration Control Module

RAT 1 RAT 2 ... RAT n

October 7, 2009 E3 - Cognitive Radio Slide 7 Alcatel-Lucent
Functional Architecture (FA) Multi Operator Case
Heterogeneous Wireless System and Functional Building Blocks

- AEM
- JRRM
- CPC
- SS
- RCM

- Multi-Receiver Terminal
- Single-Receiver Terminal, reconfigurable

FBS: Flexible Base Station

Radio Access
- DSM
- DSNPM
- Self-x (RAN)
- JRRM
- CPC
- SS
- RCM

Operation & Management
- Core Network
- PCRF
- Operation & Management
- FBS

Core Network
- SAE Serving Gateway
- SAE PDN Gateway
- HSS
- MME
- DSNPM
- Self-x (RAN)
- RCM
- CPC
- ANDSF
- Self-x (RAN)

WLAN
- ePDG
- FBS: Flexible Base Station
Self-Management and Self-Optimisation of Cognitive Systems:

- Awareness of user, device and context information
- Policies derivation
- Decision making
- Reconfiguration
- Learning

Cognitive Systems determine and configure their operation based on the knowledge and experience obtained through learning,

- In a reactive manner, i.e. responding to the detection of problematic situations
- Proactively to prevent issues undermining the optimal system function

Simulation of new approaches & algorithms

Recommendations for service-, network providers & equipment manufacturers
Self-Organization of Networks (2/4)

Self-X: Self-configuration, Self-optimisation, self-healing

⇒ for single-RAT networks as well as heterogeneous networks
⇒ Spectrum selection, inter-cell interference coordination
⇒ Cell-outage compensation, cell self-reconfiguration
⇒ Handover optimisation, load balancing

deployment of new cells & nodes → self-configuration → operational mode

self-optimisation

Performance monitoring

optimised radio parameters
Self-Organization of Networks (3/4)

Input:
- **Context**: traffic, mobility, interference, element status
 - Change of element status, e.g., fault of some component like TRX → trigger for self-healing mechanisms
- **Profiles**: equipment, application, user requirements and preferences
- **Policies**: optimization objectives, strategies, constraints

Optimization mechanisms:
- **Algorithms** for various time scales, optimal or near-optimal
- **Short time scale**: greedy, online
- **Mid-term**: simulated-annealing, taboo search, genetic algorithms
Output:

- Configuration at various levels e.g.:
 - RAT per transceiver
 - Spectrum per transceiver
 - QoS level determination per user class

Learning:

- Contexts encountered in time space
- Solutions applied and efficiency

Impact:

- Optimal QoS, operational efficiency, automation of tasks, minimization of human involvement, reduction of operational expenditure (OPEX)
Flexible use of spectrum

- Spectrum management for optimal spectrum usage
 - Dynamic Spectrum Allocation (DSA):
 - Spectrum control in the network
 - Medium/long term radio resource optimisation
 - Dynamic Spectrum Selection (DSS):
 - Spectrum control entity in the terminal
 - Short term radio resource optimisation
Reconfigurable Base Stations and Terminals

- Reconfigurable base stations
 - Base Station Configuration and Reconfiguration to maximise the networks efficiency

- Reconfigurable terminals
Cognition Enablers

Cognition enablers - Especially for environment with flexible spectrum management

⇒ Cognitive Pilot Channel
 • Distributes information on available radio accesses and their spectrum

⇒ Cognitive Control Radio
 • Exchange of Cognitive Control information between terminals

⇒ Spectrum Sensing
Cognitive Pilot Channel (CPC)

- Cognitive Pilot Channel (CPC): a channel providing information for the operations of Cognitive Radio Systems

- Use Cases
 - Start-up scenario
 - Secondary spectrum usage
 - Radio resource optimisation

- Information model:
Out-band and In-band CPC

- **Out-band CPC**
 - RAT 1, e.g. UMTS
 - RAT 2, e.g. LTE
 - RAT 3, e.g. WiMAX
 - RAT 4, e.g. WLAN
 - RAT 5, e.g. GSM

- **In-band CPC**
 - RAT 1, e.g. UMTS
 - RAT 2, e.g. GSM
 - RAT 3, e.g. WiMAX
 - RAT 4, e.g. WLAN
 - RAT 5, e.g. LTE

- Combinations of Out-band CPC and In-band CPC are also possible

Note: In-band CPC can also be deployed in more than one RAT.
CPC configuration on network side
Here: Downlink in-band broadcast CPC
Listen on broadcast CPC on terminal side

- JRRM-T
- RAT
- RAT
- CPC

CPC Start Listen
CPC Info Notification
CPC Stop Listen

CPC DL BC
Alternative procedure: Dedicated CPC Information Request
Combined CPC procedures

- **JRRM-T**
 - Outband CPC e.g. GSM
 - RAT e.g. LTE CPC

- **RAT e.g. LTE CPC**

- **Outband CPC e.g. GSM**

- **JRRM-N**
 - Out-band broadcast CPC
 - In-band on-demand CPC

Power-on: Listen to out-band CPC
- CPC Start Listen
- CPC Info Notification
- CPC Stop Listen

Switch to In-band CPC
- CPC Info Request
- CPC Info Notification
- CPC Info Request
- CPC Info Answer

CPC Info Notification: CPC Info Request

CPC Info Request: CPC Info Answer
Fields of Interest in Standardization

- Regulation
- Autonomic and Cognitive Management in Radio Systems
- System Architecture and Interfaces
- Radio Equipment Architecture and Interfaces
- Specification Techniques for Radio Development
- Radio Equipment Architecture and Interfaces
Standardization activities to support global harmonization

Activities in ETSI
(European Telecommunications Standards Institute):

⇒ E²R II opened the path towards ETSI activities, and E³ continued participating actively

⇒ ETSI Technical Committee on Reconfigurable Radio Systems (TC RRS) has been created in 2008, extension of mandate in Sept. 2009.

⇒ Several reports have been published in 2009, e.g.
 • ETSI TR 102 682 “Functional Architecture (FA) for the Management and Control of Reconfigurable Radio Systems”
 • ETSI TR 102 683 “Cognitive Pilot Channel”
 • ETSI TR 102 838 “RRS Standardisation Issues in the area of SDR and CR – results or RRS in 2009”
IEEE Standards Coordinating Committee 41 (SCC41) on “Dynamic Spectrum Access Networks”:

- IEEE P1900.4
 - E3 project has been very active in the initiation, consolidation and successful finalization of the first P1900.4 version of the draft standard
 - Continuation in the area of
 - detailed interface design (1900.4.1)
 - DSA in White Space Frequency Bands (1900.4a)

- IEEE P1900.6 focuses on the interfaces between sensing and decision making mechanisms in cognitive radios, cognitive radio systems and in dynamic spectrum systems in general
<table>
<thead>
<tr>
<th>E3 involvement</th>
</tr>
</thead>
</table>
| **Regulation:** | ITU WP 1B on CR
 | | E3 monitors
 | ITU-R WP5A on CR | E3 contributes |
| **Autonomic and Cognitive Management:** | ETSI RRS WG3 (CPC)
 | | E3 leads
 | IEEE SCC41 P1900.6 | E3 contributes |
| **System Architecture and Interfaces:** | IEEE SCC41 P1900.4
 | | E3 contributes
 | ETSI RRS WG3 (FA) | E3 leads |
| **Radio Equipment Architecture and Interfaces:** | ETSI RRS WG2
 | | E3 contributes
 | SDR-F (Digital RF) | E3 leads |
| **Specification Techniques:** | OMG, SDR-F, OMA, ACF
 | | E3 contributes |
Summary and conclusions

- E3 Functional Architecture including functionalities for
 - Self-organizing networks and autonomous entities
 - Reconfiguration of network elements and devices
 - Dynamic Spectrum Management
 - Joint Radio Resource Management
 - Cognition Enablers (CPC, CCR, SS)

- Ongoing related standardization activities (ETSI RRS, IEEE SCC41) to support global harmonization

- E3 project has made fundamental design and development work for introducing cognitive systems into wireless communication infrastructures
Thank you!

Acknowledgement

This work was performed in project E3 which has received research funding from the Community's Seventh Framework program. This paper reflects only the authors' views and the Community is not liable for any use that may be made of the information contained therein. The contributions of colleagues from E3 consortium are hereby acknowledged.