An Architecture for Acquisition and Provision of Hotspot Coverage Information

Stephan Lück, Michael Scharf

29.10.2005
Institute of Communication Networks and Computer Engineering
Universität Stuttgart
{lueck,scharf}@ikr.uni-stuttgart.de
Outline

• Introduction to Model-based Access Discovery
• Architecture for Acquisition and Provision of Coverage Information
• Algorithms to Convert Field Strength Values to Polygons
• Information Storage and Retrieval
• Conclusions and Outlook
Selection of the “best” access for a given application required
Access Discovery delivers information needed for access selection

Measurement-based Access Discovery
- classical approach: uses measurements on the physical layer
- requires time and energy intensive scanning procedures
- some technologies do not very well support scanning while communicating
- amount of obtainable information is limited
Model-based Access Discovery

- uses location-based and context-based information systems
- provides with additional, often technology independent, information: load, prices, coverage
- can discover distant hotspots, which are not detected by measurements

Challenges
- acquisition of information to be stored in context-based information systems
- making information available to terminals
- overhead should be small
- information should be simple to process by terminals
Access Discovery (3)

- Radio Interface (sensor)
- Data Model
- Access Selection Decision
- Position Sensor (e.g. GPS)
- Terminal
Spacial and temporal separation of data acquisition and decision

Model-based Access Discovery could be seen as an application of a context-based information system

Model-based Access-Discovery consumes as little resources as possible
Distributed Data Acquisition

- Mobile Terminals collect field strength values
- A data record has the form (technology, cell ID, signal strength, position)
- Upload of values
 - individual values
 - list of values, when a hotspot is reached
Distributed Data Acquisition

- Mobile Terminals collect field strength values
- A value has the form (technology, cell ID, signal strength, position)
- Upload of values
 - individual values
 - list of values, when a hotspot is reached
- Conversion to polygons
- Transfer to a Context Server

Distributed data acquisition

Field Strength Values

Report Database

Context-Server

coverage estimation

Polygons
Distributed Data Acquisition

- Mobile Terminals collect field strength values
- A value has the form (technology, cell ID, signal strength, position)
- Upload of values
 - individual values
 - list of values, when a hotspot is reached
- Conversion to polygons
- Transfer to a Context Server
- Terminals query the Context Server for coverage information
Architecture (4)

Distributed data acquisition
- Report Database
- Field Strength Values
- Coverage estimation

Central data acquisition
- Context-Server
- Network Planning Data
- Nexus Federation

Query

Polygons
Conversion of Field Strength Values to Polygons

1. **Rasterization**
 - alignment of field strength values to a grid of equidistant points
 - conversion from a list of field strength records to a matrix representation

2. **Interpolation**
 - improves vectorization results if only a small amount of data is available

3. **Vectorization**
 - uses a contour line algorithm
 - yields complex polygons

4. **Polygon Simplification**
 - Removal of irrelevant vertices
 - Aim: reduce size of data records
Simplification Algorithms

- **Distance-based**
 - “simple distance”
 - “Euclidean distance”

- **Slope-based**
Error measures

- **Functions of error measures**
 - allows to compare the simplification algorithms
 - helps to find a trade-off between accuracy and size of data records

- **Variants**
 - mean (square) distance between vertices of the original polygon and the edge of the simplified polygon
 - area enclosed by original and simplified polygon
Evaluation

- **Simplification of a 39-vertices-polygon**

<table>
<thead>
<tr>
<th>vertices</th>
<th>simple distance</th>
<th>euclidean distance</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>17</td>
<td>17</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>58</td>
<td>65</td>
<td>86</td>
</tr>
<tr>
<td>10</td>
<td>95</td>
<td>120</td>
<td>151</td>
</tr>
<tr>
<td>5</td>
<td>217</td>
<td>237</td>
<td>296</td>
</tr>
</tbody>
</table>

- **Result**
 - distance-based Algorithms perform better
 - the error increases superproportionally with the number of reduced vertices
Data Storage

- **Nexus Augmented World Model (AWM)**
 - Object oriented data model used to describe spatial information
 - Contains classes that represent access networks

Data Retrieval

- **Representation of AWM objects: AWML** *(Augmented World Modelling Language)*
- **Query Language: AWQL** *(Augmented World Query Language)*
 - Query objects within a given area
 - Restrict returned objects to a given type of information, for example access discovery information
Schema of access networks and access entities

- **SpatialCommunicationObject**
 - position
 - extent

- **AccessEntity**
 - operatingState
 - numberUsers
 - maxNumberOfUsers
 - load

- **AccessNetwork**
 - operatingState

- **RadioCell**

- **WLANCell**
 - macAddr

- **GPRSCell**

- **WLANExtendedServiceSet**
 - essid

- **GPRSNet**
 - mcc
 - mnc

Data Storage and Retrieval (2)
Schema of access networks and services

Institute of Communication Networks and Computer Engineering
Universität Stuttgart
Conclusions and Outlook

Conclusions

- Model-based Access Discovery can complement measurement-based access discovery
 - to get position and extent of Hotspots
 - to determine other information about Hotspots
- The Nexus-Platform allows to define an architecture, which supports model-based Access Discovery
 - distributed data acquisition and central data acquisition
- Field Strength Values are converted to Polygons
 - to keep data records to be transmitted to the terminal small
 - to simplify processing within the terminal

Outlook

- Investigation of time-dependent behaviour of coverage estimation
- Algorithms to merge coverage information within the Federation
An Architecture for Acquisition and Provision of Hotspot Coverage Information

Stephan Lück, Michael Scharf

29.10.2005
Institute of Communication Networks and Computer Engineering
Universität Stuttgart
{lueck,scharf}@ikr.uni-stuttgart.de