
Network Working Group M. Scharf
Internet−Draft University of Stuttgart
Intended status: Experimental S. Floyd
Expires: January 3, 2008 ICIR
 P. Sarolahti
 Nokia Research Center
 July 2, 2007

 Avoiding Interactions of Quick−Start TCP and Flow Control
 draft−scharf−tsvwg−quick−start−flow−control−01.txt

Status of this Memo

 By submitting this Internet−Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet−Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet−
 Drafts.

 Internet−Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet−Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet−Drafts can be accessed at
 http://www.ietf.org/ietf/1id−abstracts.txt.

 The list of Internet−Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet−Draft will expire on January 3, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document describes methods to avoid interactions between the
 flow control of the Transmission Control Protocol (TCP) and the
 Quick−Start TCP mechanism. Quick−Start is an optional TCP congestion
 control extension that allows hosts to determine an allowed sending
 rate from feedback of routers along the path. With Quick−Start, data

Scharf, et al. Expires January 3, 2008 [Page 1]

Internet−Draft Quick−Start TCP and Flow Control July 2007

 transfers can start with a potentially large congestion window and
 avoid the time−consuming slow−start. In order to fully utilize the
 data rate determined by Quick−Start, the sending host must not be
 limited by the TCP flow control, i. e., the amount of free buffer
 space advertised by the receive window.

 There are two potential interactions between Quick−Start and the TCP
 flow control: First, receivers might not provide sufficiently large
 buffer space after connection setup, or they may implement buffer
 allocation strategies that implicitly assume the slow−start behavior
 on the sender side. This document therefore provides guidelines for
 buffer allocation in hosts supporting the Quick−Start extension.
 Second, the TCP receive window scaling mechanism interferes with
 Quick−Start when being used in the initial three−way handshake
 connection setup. This document describes a simple solution to
 overcome this problem.

Scharf, et al. Expires January 3, 2008 [Page 2]

Internet−Draft Quick−Start TCP and Flow Control July 2007

Table of Contents

 1. Introduction . 4
 2. Requirements Notation . 4
 3. Quick−Start TCP and Receive Buffer Dimensioning 5
 3.1. Receiver Buffer Allocation Strategies 5
 3.2. Recommendations for Buffer Dimensioning in Presence of
 Quick−Start Requests 5
 4. Quick−Start TCP and Receive Window Scaling 6
 4.1. Receive Window Scaling 6
 4.2. Problem Within the Three−way Handshake 6
 4.3. Proposed Solution . 7
 4.4. Discussion and Deployment Considerations 9
 5. Security Considerations 10
 6. IANA Considerations . 10
 7. Acknowledgments . 10
 8. References . 11
 8.1. Normative References 11
 8.2. Informative References 11
 Appendix A. Applicability to Other Proposals 12
 Appendix B. Alternative Solutions 12
 Authors’ Addresses . 13
 Intellectual Property and Copyright Statements 14

Scharf, et al. Expires January 3, 2008 [Page 3]

Internet−Draft Quick−Start TCP and Flow Control July 2007

1. Introduction

 Quick−Start is an experimental extension for the Transmission Control
 Protocol (TCP) [RFC0793] that allows to speed up best effort data
 transfers. The Quick−Start TCP extension is specified in [RFC4782].
 With Quick−Start, TCP hosts can request permission from the routers
 along a network path to send at a higher rate than allowed by the
 default TCP congestion control, in particular during connection setup
 or after longer idle periods. The explicit router feedback avoids
 the time−consuming capacity probing by the TCP slow−start and can
 significantly improve transfer times over paths with a high
 bandwidth−delay product [SAF07].

 The usage of Quick−Start significantly changes the TCP behavior
 during connection setup. This is why special care is needed in order
 to prevent interactions between Quick−Start and other TCP mechanisms.
 Specifically, TCP flow control mechanisms have to be optimized for
 the usage of Quick−Start, in particular when the TCP connection spans
 a path with a large bandwidth−delay product (BDP). In such cases
 both congestion and receive window should have large values in order
 to achieve good TCP performance (see [RFC2488],[RFC3481]).

 Unlike the standard slow−start mechanism, the Quick−Start TCP
 extension allows the sender to use large congestion windows
 immediately after connection setup. The usage of such large windows
 raises two questions: First, what receiver buffer allocation
 strategies should be used in combination with Quick−Start? And
 second, how to appropriately signal these large windows? This
 document addresses these issues and shows that Quick−Start requires
 special mechanisms in both cases. The document thereby supplements
 the Quick−Start TCP specification [RFC4782], where flow control
 issues have not been addressed in detail.

 The rest of this document is structured as follows: First, the
 question of receive buffer allocation in combination with Quick−Start
 is addressed and dimensioning guidelines are provided. Second, a
 modification of the receive window scaling mechanism [RFC1323] is
 specified, which is required to fully benefit from Quick−Start when
 the Quick−Start request is used in the initial <SYN> segment.

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Scharf, et al. Expires January 3, 2008 [Page 4]

Internet−Draft Quick−Start TCP and Flow Control July 2007

3. Quick−Start TCP and Receive Buffer Dimensioning

3.1. Receiver Buffer Allocation Strategies

 A sender can transmit up to the minimum of the congestion window and
 the receive window (also called receiver’s advertised window)
 [RFC2581]. A small receive window prevents the TCP connection from
 fully utilizing paths with a larger bandwidth−delay product. As a
 consequence, on the one hand, a TCP receiver should advertise a
 receive window that is big enough to allow an efficient utilization
 of the connection path. On the other hand, hosts with a potentially
 high number of TCP connections need to optimize the buffer and memory
 usage to be able to serve a maximum possible number of TCP
 connections. Finding a fixed receive buffer size that is optimal
 between these two goals is difficult.

 This is why many modern TCP implementations use an intelligent
 dynamic buffer management. There are different auto−tuning
 techniques and heuristics [Dun06] designed to prevent the receive
 window from limiting the data rate at the sender. An implementation
 using buffer size auto−tuning is described for instance in [SB05]. A
 common characteristic of most of these buffer allocation strategies
 is that they initially start with a rather small receive window. The
 more data arrives, the more buffer is allocated to the corresponding
 connection. This behavior is reasonable if the sender uses the
 standard slow−start algorithm and thus starts with a small congestion
 window anyway. However, when using Quick−Start, a large receive
 buffer may be required immediately after connection setup.

3.2. Recommendations for Buffer Dimensioning in Presence of Quick−Start
 Requests

 When a host receives and approves a Quick−Start request, in
 particular during the connection setup, it SHOULD announce a receive
 window that is large enough so that a potential Quick−Start data
 transfer can start with a high sending window. If buffer size auto−
 tuning is used, it SHOULD be ensured that a sufficiently high initial
 receive window is announced. The handling of buffer space upon
 arrival of a Quick−Start request SHOULD be configurable by the
 corresponding application.

 If the TCP host has sufficient receive buffer space, it could
 estimate the required buffer space as the product of the approved
 Quick−Start rate and the round−trip time, and advertise a receive
 window based on this required buffer space. This receive window
 should allow the other TCP host to fully use the approved Quick−Start
 Request.

Scharf, et al. Expires January 3, 2008 [Page 5]

Internet−Draft Quick−Start TCP and Flow Control July 2007

 If the TCP host doesn’t know the round−trip time, the TCP host could
 use an estimate of the round−trip time in calculating the required
 buffer space. For instance, the buffer dimension could be done for a
 configurable "worst−case" RTT such as 500 ms. Alternately, the TCP
 host could base the advertised receive window on the available buffer
 space, without calculating the buffer space required for the other
 TCP host to fully use the approved Quick−Start Request.

4. Quick−Start TCP and Receive Window Scaling

4.1. Receive Window Scaling

 The TCP header specified in [RFC0793] uses a 16 bit field to report
 the receive window size to the sender. This effectively limits the
 sending window to 64 KB. To circumvent this problem, the "Window
 Scale" TCP extension [RFC1323] defines an implicit scale factor,
 which is used to multiply the window size value found in a TCP header
 to obtain a 32 bit window size. If enabled, the scale factor is
 announced during connection setup by the "Window Scale" TCP option in
 <SYN> and <SYN,ACK> segments.

 In general, using receive window scaling is highly beneficial for TCP
 connections over path with a large bandwidth−delay product
 [RFC2488],[RFC3481]. Otherwise, the path capacity cannot fully be
 utilized by TCP. Quick−Start TCP can significantly speed up data
 transfers over such paths [RFC4782],[SAF07]. As a consequence, a
 host supporting Quick−Start SHOULD enable receive window scaling
 according to [RFC1323]. If Quick−Start is used in the initial three−
 way handshake, the minimum required scaling factor MAY be obtained
 from the required receive buffer space, which can be approximated as
 described in the previous section.

4.2. Problem Within the Three−way Handshake

 A problem arises when the Quick−Start mechanism is used within the
 three−way handshake, and the Quick−Start request is added to the
 initial <SYN> segment: In this scenario, if the Quick−Start request
 is approved by the routers along the path, the receiver echoes back
 the Quick−Start response in the <SYN,ACK> segment. This process is
 illustrated in [RFC4782]. Upon reception of the <SYN,ACK> with the
 Quick−Start response, the sender can set the congestion window to the
 determined value so that it can immediately start to send with the
 approved data rate.

 However, [RFC1323] defines that the "Window field in a SYN (i.e., a
 <SYN> or <SYN,ACK>) segment itself is never scaled." This means that
 the maximum receive window that can be signaled to the sender in the

Scharf, et al. Expires January 3, 2008 [Page 6]

Internet−Draft Quick−Start TCP and Flow Control July 2007

 <SYN,ACK> is 64 KB. As a consequence, the TCP flow control will
 prevent the TCP sender from having more than 64 KB of outstanding
 data, even if the receiver has much more free buffer, and the Quick−
 Start feedback allows a much larger congestion window.

 This effect essentially limits the maximum amount of data sent by
 Quick−Start to 64 KB, when the sender sends the Quick−Start request
 in the initial <SYN> segment. Also, the congestion window after
 quiting the Quick−Start rate pacing phase is at most 64 KB, as the
 congestion window is set to the amount of data that has actually been
 sent during the rate pacing phase. This is an undesirable
 restriction for the Quick−Start mechanism, even if 64 KB is still
 much more than the initial congestion window in slow−start that is
 allowed by [RFC3390].

 This issue only occurs when Quick−Start is used in the three−way TCP
 connection setup procedure, and only in the direction of the client
 (connection originator) to the server. Still, this case is one of
 the planned usage scenarios for the Quick−Start TCP extension.

4.3. Proposed Solution

 The limitation imposed by the window scaling could be addressed in
 different ways. This document proposes the following solution: If
 necessary, the TCP host SHOULD send a scaled receive window in a
 separate <ACK> packet following the <SYN,ACK> packet.

 This means that when a host receives a <SYN> segment with a Quick−
 Start option, it processes the option as described in [RFC4782].
 Provided that the host has Quick−Start support enabled, the Quick−
 Start response is echoed back in the <SYN,ACK> segment. As
 explained, this segment cannot announce receive windows larger than
 64 KB. If the receiver allocates a buffer space larger than 64 KB,
 an additional empty segment (without <SYN> flag) SHOULD be sent after
 the <SYN,ACK> segment, in order to announce the true receive window.
 The resulting message flow is depicted in Figure 1.

Scharf, et al. Expires January 3, 2008 [Page 7]

Internet−Draft Quick−Start TCP and Flow Control July 2007

 Sender Routers (approving QS request) Receiver
 −−−−−− −−−−−−− −−−−−−−−
 | |
 | −−>|
 | QS request |
 | TCP <SYN>, unscaled receive window |
 | window scaling and other options |
 | |
 | <−−|
 | QS response |
 | TCP <SYN,ACK>, unscaled receive window |
 | window scaling and other options |
 | |
 | <−−|
 | Additional acknowledgment |
 | TCP <ACK>, scaled receive window |
 | |
 | −−>|
 | QS report |
 | TCP <ACK> |
 | |
 | ==>|
 | ==>|
 | Rate paced data transfer |
 | |
 | <−−|
 | First new acknowledgment |
 V V

 Figure 1: Message sequence chart of the proposed mechanism

 After having received this additional acknowledgment, the sender is
 aware of the true available receive buffer. Provided that the Quick−
 Start request is approved on the path and that the receive window is
 sufficiently large, this allows the sender to send more than 64 KB
 during the Quick−Start rate pacing phase.

 We note that there is some degree of freedom as to when to send the
 additional acknowledgment. The straightforward solution is to send
 it immediately after the <SYN,ACK> segment. But this is not
 required: It is sufficient if the sender receives this segment before
 reaching the limit of the unscaled receive window. As a consequence,
 receivers could also delay the sending of this segment for some small
 amount of time.

Scharf, et al. Expires January 3, 2008 [Page 8]

Internet−Draft Quick−Start TCP and Flow Control July 2007

4.4. Discussion and Deployment Considerations

 The method proposed in this document is compliant with the TCP
 specifications: Sending empty segments to increase the receive window
 is implicitly allowed by [RFC0793], and in [RFC2581] it is clearly
 stated that sending an acknowledgment is allowed to update the
 receive window. For standard−compliant TCP stacks, implementing the
 method thus should require changes in the receiver TCP implementation
 only.

 However, sending an empty acknowledgment shortly after a <SYN,ACK>
 segment is an atypical TCP communication event. The <SYN,ACK> and
 the additional segment could get reordered in the network. In this
 case, the sending host will typically ignore the additional segment,
 as it is still awaiting the <SYN,ACK>. Furthermore, middleboxes such
 as state−full firewalls might drop the additional acknowledgment.
 Even worse, this segment might also be dropped if a middlebox
 receives it earlier than the <ACK> segment from the sender. At this
 point in time, from the viewpoint of the middlebox, the bi−
 directional end−to−end TCP connection is not yet established. If the
 additional segment gets dropped, the sender gets informed about the
 unscaled receive window when the next new acknowledgment arrives,
 which may limit the benefit of Quick−Start. Delaying the additional
 acknowledgment for a short period of time could help to avoid such
 problems. Further investigation is needed to analyze whether such a
 delay is required.

 A possible alternative to the message flow in Figure 1 would be to
 piggyback the Quick−Start response on the additional acknowledgment
 segment instead of the <SYN,ACK>. However, this approach has several
 drawbacks and is therefore not recommended: First, the Quick−Start
 response would be received later, which could cause additional
 delays. Second, the <SYN,ACK> is immediately acknowledged by the
 <ACK> segment. The Quick−Start rate report can thus be piggybacked
 on this <ACK>. In contrast, if the Quick−Start response is included
 in the additional acknowledgment, the Quick−Start report has to be
 piggybacked to a data segment, i. e., it depends on the availability
 of application data whether and when the Quick−Start report is sent.

 The additional segment mandated by this document results in a network
 overhead of one segment. In many potential usage scenarios this
 overhead will be small compared to the network load caused by the
 acknowledgments of a starting high−speed Quick−Start data transfer.

 Instead of sending one additional acknowledgment, a host could also
 send a small number of copies in order to improve robustness. This
 could help to reduce the risk of reordering with the <SYN,ACK>
 segment. However, given the additional overhead, it is recommended

Scharf, et al. Expires January 3, 2008 [Page 9]

Internet−Draft Quick−Start TCP and Flow Control July 2007

 to send only one acknowlegdment unless there are indications that the
 path suffers from frequent packet reordering.

5. Security Considerations

 Quick−Start TCP imposes a number of security challenges. Known
 security threats as well as counter−measures are discussed in the
 section "Security Considerations" of [RFC4782]. Since this document
 describes extensions to Quick−Start TCP, the security issues and
 solutions identified in [RFC4782] apply here, too.

 If a host allocates large amounts of buffer space during the three−
 way handshake, this could increase the vulnerability to "syn
 flooding" attacks: An attacker sending many Quick−Start requests
 could try to allocate much buffer space at a host, which is then not
 available any more for other TCP connections. If most involved
 routers support Quick−Start, this type of attack is difficult to
 realize, since the routers may reject many requests before they reach
 a host. However, an attack could be possible if some routers on the
 path do not support Quick−Start. A simple countermeasure would be to
 set an upper limit on the total amount of buffer space granted to
 connections with Quick−Start, and possibly to deny requests if they
 arrive at a host with too high a frequency. The main impact of this
 abuse is that Quick−Start may be rendered useless for other
 connections. This can result in some performance degradation,
 because the default slow−start must be used instead. In general, it
 is an inherent weak point of Quick−Start that one can send much more
 requests than required, which temporarily can block resources for
 other earnest Quick−Start requests [RFC4782].

 It is an allowed behavior for a TCP connection endpoint to send an
 additional acknowledgment segment in order to update the receive
 window. The usage of the proposed mechanism causes some limited
 network overhead, but it does not result in additional security
 threats.

6. IANA Considerations

 This document has no actions for IANA.

7. Acknowledgments

 Special thanks to Haiko Strotbek, Martin Koehn, Simon Hauger,
 Christian Mueller, and Gorry Fairhurst for suggestions and comments.

Scharf, et al. Expires January 3, 2008 [Page 10]

Internet−Draft Quick−Start TCP and Flow Control July 2007

8. References

8.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP’s
 Initial Window", RFC 3390, October 2002.

 [RFC4782] Floyd, S., Allman, M., Jain, A., and P. Sarolahti, "Quick−
 Start for TCP and IP", RFC 4782, January 2007.

8.2. Informative References

 [Dun06] Dunigan, T., "TCP auto−tuning zoo", available
 at http://www.csm.ornl.gov/~dunigan/net100/auto.html,
 February 2006.

 [FPK07] Falk, A., Pryadkin, Y., and D. Katabi, "Specification for
 the Explicit Control Protocol (XCP)", Internet Draft, work
 in progress, June 2007.

 [LAJ+07] Liu, D., Allman, M., Jin, S., and L. Wang, "Congestion
 Control Without a Startup Phase", Proc. PFLDnet2007,
 February 2007.

 [RFC2488] Allman, M., Glover, D., and L. Sanchez, "Enhancing TCP
 Over Satellite Channels using Standard Mechanisms",
 BCP 28, RFC 2488, January 1999.

 [RFC3481] Inamura, H., Montenegro, G., Ludwig, R., Gurtov, A., and
 F. Khafizov, "TCP over Second (2.5G) and Third (3G)
 Generation Wireless Networks", BCP 71, RFC 3481,
 February 2003.

 [SAF07] Sarolahti, P., Allman, M., and S. Floyd, "Determining an
 Appropriate Sending Rate Over an Underutilized Network
 Path", Computer Networks, vol. 51, no. 7, 2007.

Scharf, et al. Expires January 3, 2008 [Page 11]

Internet−Draft Quick−Start TCP and Flow Control July 2007

 [SB05] Smith, M. and S. Bishop, "Flow Control in the Linux
 Network Stack", available
 at http://www.cl.cam.ac.uk/~pes20/Netsem/linuxnet.pdf,
 February 2005.

Appendix A. Applicability to Other Proposals

 Besides Quick−Start, there are some other related proposals for
 behavior more aggressive than the standard slow−start. A
 comprehensive survey of this related work can be found in [RFC4782].
 For instance, the Explicit Control Protocol (XCP) [FPK07] proposes a
 new congestion control based on explicit router feedback.
 Furthermore, there are discussions in the research community whether
 a host could start to send with an arbitrarily high data rate,
 combined with a conservative reaction in case of congestion [LAJ+07].

 Basically, the effects discussed in this document are not specific to
 Quick−Start. An interaction with the TCP flow control could also
 occur with other congestion control mechanisms that avoid the
 standard TCP slow−start. Receive buffer dimensioning will be a non−
 trivial task in all these cases. The amount of information that a
 receiver can gain during a connection setup procedure differs from
 proposal to proposal. However, the basic guideline to use a larger
 inital receive buffer allocation applies to all proposals similar to
 Quick−Start.

 If the TCP header semantics apply, the interaction with receive
 window scaling mechanism could also be a problem for other
 approaches. In this case, the workaround of sending an additional
 acknowledgment can be helpful, too.

Appendix B. Alternative Solutions

 The limitation imposed by the window scaling could be addressed in
 several ways. This document proposes to send an additional
 acknowledgment to announce the true receive window, if needed. This
 method is compliant with the current TCP standards.

 Alternatively, one could circumvent [RFC1323] in several ways. For
 instance, one could use a scaled receive window in <SYN> and
 <SYN,ACK> segments, if they include Quick−Start options. The usage
 of a scaled window could also be indicated by some other means (e.
 g., a new TCP option). Still, such alternative solutions would
 require changes in the TCP header semantics and might cause
 interworking problems with currently deployed TCP implementations.

Scharf, et al. Expires January 3, 2008 [Page 12]

Internet−Draft Quick−Start TCP and Flow Control July 2007

Authors’ Addresses

 Michael Scharf
 University of Stuttgart
 Pfaffenwaldring 47
 D−70569 Stuttgart
 Germany

 Phone: +49 711 685 69006
 Email: michael.scharf@ikr.uni−stuttgart.de
 URI: http://www.ikr.uni−stuttgart.de/en/~scharf

 Sally Floyd
 ICIR (ICSI Center for Internet Research)

 Phone: +1 (510) 666−2989
 Email: floyd@icir.org
 URI: http://www.icir.org/floyd/

 Pasi Sarolahti
 Nokia Research Center
 P.O. Box 407
 FI−00045 NOKIA GROUP
 Finland

 Phone: +358 50 4876607
 Email: pasi.sarolahti@iki.fi

Scharf, et al. Expires January 3, 2008 [Page 13]

Internet−Draft Quick−Start TCP and Flow Control July 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on−line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf−ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Scharf, et al. Expires January 3, 2008 [Page 14]

