
Network Working Group M. Scharf
Internet−Draft University of Stuttgart
Intended status: Experimental S. Floyd
Expires: August 30, 2007 ICIR
 P. Sarolahti
 Nokia Research Center
 February 26, 2007

 Avoiding Interactions of Quick−Start TCP and Flow Control
 draft−scharf−tsvwg−quick−start−flow−control−00.txt

Status of this Memo

 By submitting this Internet−Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet−Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet−
 Drafts.

 Internet−Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet−Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet−Drafts can be accessed at
 http://www.ietf.org/ietf/1id−abstracts.txt.

 The list of Internet−Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet−Draft will expire on August 30, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document describes methods to avoid interactions between the
 flow control of the Transmission Control Protocol (TCP) and the
 Quick−Start TCP extension. Quick−Start is an optional TCP congestion
 control mechanism that allows hosts to determine an allowed sending
 rate from feedback of routers along the path. With Quick−Start, data

Scharf, et al. Expires August 30, 2007 [Page 1]

Internet−Draft Quick−Start TCP and Flow Control February 2007

 transfers can start with a potentially large congestion window. In
 order to fully utilize the data rate determined by Quick−Start, the
 sending host must not be limited by the TCP flow control, i. e., the
 amount of free buffer space advertised by the receive window.

 There are two potential interactions between Quick−Start and the TCP
 flow control: First, receivers might not provide sufficiently large
 buffer space after connection setup, or they may implement buffer
 allocation strategies that implicitly assume the slow−start behavior
 on the sender side. This document therefore provides guidelines for
 buffer allocation in hosts supporting the Quick−Start extension.
 Second, the TCP receive window scaling mechanism interferes with
 Quick−Start when being used in the initial three−way handshake
 connection setup. This document describes a simple solution to
 overcome this problem.

Table of Contents

 1. Introduction . 3
 2. Requirements notation . 4
 3. Quick−Start TCP and receive buffer dimensioning 4
 3.1. Receiver buffer allocation strategies 4
 3.2. Recommendations for buffer dimensioning in presence of
 Quick−Start requests 4
 4. Quick−Start TCP and receive window scaling 5
 4.1. Receive window scaling 5
 4.2. Problem within the three−way handshake 5
 4.3. Possible remedy . 6
 4.4. Discussion and deployment considerations 8
 5. Security Considerations 8
 6. IANA considerations . 9
 7. Acknowledgments . 9
 8. References . 9
 8.1. Normative References 9
 8.2. Informative References 10
 Authors’ Addresses . 10
 Intellectual Property and Copyright Statements 12

Scharf, et al. Expires August 30, 2007 [Page 2]

Internet−Draft Quick−Start TCP and Flow Control February 2007

1. Introduction

 Quick−Start is an experimental extension for the Transmission Control
 Protocol (TCP) [RFC0793] that allows to speed up best effort data
 transfers. The Quick−Start TCP extension is specified in [RFC4782].
 With Quick−Start, TCP hosts can request permission from the routers
 along a network path to send at a higher rate than allowed by the
 default TCP congestion control, in particular after connection setup
 or longer idle periods. The explicit router feedback avoids the
 time−consuming capacity probing by the TCP slow−start and can
 significantly improve transfer times over paths with a high
 bandwidth−delay product [SAF07].

 The usage of Quick−Start significantly changes the TCP behavior
 during connection setup. This is why special care is needed in order
 to prevent interactions between Quick−Start and other TCP mechanisms.
 Specifically, TCP flow control mechanisms have to be optimized for
 the usage of Quick−Start, in particular when the TCP connection spans
 a path with a large bandwidth−delay product (BDP). In such cases the
 sending window should have a large value in order to achieve good TCP
 performance (see [RFC2488],[RFC3481]).

 Unlike the standard slow−start mechanism, the Quick−Start TCP
 extension allows the sender to use large congestion windows
 immediately after connection setup. The usage of such large windows
 raises two questions: First, what receiver buffer allocation
 strategies should be used in combination with Quick−Start? And
 second, how to appropriately signal these large windows? This
 document addresses these issues and shows that Quick−Start requires
 special mechanisms in both cases. The document thereby supplements
 the Quick−Start TCP specification [RFC4782], where flow control
 issues have not been addressed in detail.

 The rest of this document is structured as follows: First, the
 question of receive buffer allocation in combination with Quick−Start
 is addressed and dimensioning guidelines are provided. Second, a
 modification of the receive window scaling mechanism [RFC1323] is
 specified, which is required to fully benefit from Quick−Start when
 the Quick−Start request is used in the initial <SYN> segment.

 It should be noted that the effects and most methods discussed in
 this document are not specific to the Quick−Start TCP extension.
 They could also be used in combination with other proposals that
 cause a behavior more aggressive than standard TCP slow−start, for
 instance [LAJ+07].

Scharf, et al. Expires August 30, 2007 [Page 3]

Internet−Draft Quick−Start TCP and Flow Control February 2007

2. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Quick−Start TCP and receive buffer dimensioning

3.1. Receiver buffer allocation strategies

 The TCP sending window results from the minimum of the congestion
 window and the receive window (also called advertised receiver
 window) [RFC2581]. A small receive window prevents the TCP
 connection from fully utilizing paths with a larger bandwidth−delay
 product. As a consequence, on the one hand, a TCP receiver should
 advertise a receive window that is big enough to allow an efficient
 utilization of the connection path. On the other hand, hosts with a
 potentially high number of TCP connections need to optimize the
 buffer and memory usage to be able to serve a maximum possible number
 of TCP connections. Finding a fixed receive buffer size that is
 optimal between these two goals is difficult.

 This is why many modern TCP implementations use an intelligent
 dynamic buffer management. There are different auto−tuning
 techniques and heuristics [Dun06] designed to prevent the receive
 window from limiting the data rate at the sender. An implementation
 using buffer size auto−tuning is described for instance in [SB05]. A
 common characteristic of most of these buffer allocation strategies
 is that they initially start with a rather small receive window. The
 more data arrives, the more buffer is allocated to the corresponding
 connection. This behavior is reasonable if the sender uses the
 standard slow−start algorithm and thus starts with a small congestion
 window anyway. However, when using Quick−Start, a large receive
 buffer may be required immediately after connection setup.

3.2. Recommendations for buffer dimensioning in presence of Quick−Start
 requests

 When a host receives and approves a Quick−Start request, in
 particular during the connection setup, it SHOULD allocate a
 "reasonable" amount of buffer space so that a potential Quick−Start
 data transfer can start with a high sending window. If buffer size
 auto−tuning is used, it SHOULD be ensured that a sufficiently high
 initial receive window is announced. The handling of buffer space
 upon arrival of a Quick−Start request SHOULD be configurable by the
 corresponding application.

Scharf, et al. Expires August 30, 2007 [Page 4]

Internet−Draft Quick−Start TCP and Flow Control February 2007

 Determining an appropriate "reasonable" receive buffer size is not a
 trivial task and also depends on the available system resources.
 However, unlike standard TCP slow−start, the Quick−Start extension
 provides some additional information that could help to properly
 dimension the receive buffer. A reasonable buffer size would
 typically be a small multiple of the bandwidth−delay product of the
 path. An approximation of the available bandwidth can be directly
 obtained from the approved Quick−Start rate in the received request.
 If the round−trip time (RTT) to the Quick−Start originator is also
 known (e. g., if it has been cached from previous connections), a
 reasonable buffer size can be directly calculated as a small multiple
 of the BDP. In case that the round−trip time is not known, the
 buffer dimension could be done for a configurable "worst−case" RTT
 such as 500 ms.

4. Quick−Start TCP and receive window scaling

4.1. Receive window scaling

 The TCP header specified in [RFC0793] uses a 16 bit field to report
 the receive window size to the sender. This effectively limits the
 sending window to 65 kB. To circumvent this problem, the "Window
 Scale" TCP extension [RFC1323] defines an implicit scale factor,
 which is used to multiply the window size value found in a TCP header
 to obtain a 32 bit window size. If enabled, the scale factor is
 announced during connection setup by the "Window Scale" TCP option in
 <SYN> and <SYN,ACK> segments.

 In general, using receive window scaling is highly beneficial for TCP
 connections over path with a large bandwidth−delay product
 [RFC2488],[RFC3481]. Otherwise, the path capacity cannot fully be
 utilized by TCP. Quick−Start TCP can significantly speed up data
 transfers over such paths [RFC4782],[SAF07]. As a consequence, a
 host supporting Quick−Start SHOULD enable receive window scaling. If
 Quick−Start is used in the initial three−way handshake, the minimum
 required scaling factor can be obtained from the required receive
 buffer space, which can be approximated as described in the previous
 section.

4.2. Problem within the three−way handshake

 A problem arises when the Quick−Start mechanism is used within the
 three−way handshake, and the Quick−Start request is added to the
 initial <SYN> segment: In this scenario, if the Quick−Start request
 is approved by the routers along the path, the receiver echoes back
 the Quick−Start response in the <SYN,ACK> segment. This process is
 illustrated in [RFC4782]. Upon reception of the <SYN,ACK> with the

Scharf, et al. Expires August 30, 2007 [Page 5]

Internet−Draft Quick−Start TCP and Flow Control February 2007

 Quick−Start response, the sender can set the congestion window to the
 determined value so that it can immediately start to send with the
 approved data rate.

 However, [RFC1323] defines that the "Window field in a SYN (i.e., a
 <SYN> or <SYN,ACK>) segment itself is never scaled." This means that
 the maximum receive window that can be signaled to the sender in the
 <SYN,ACK> is 65 kB. As a consequence, the TCP flow control will
 prevent the TCP sender from having more than 65 kB of outstanding
 data, even if the receiver has much more free buffer, and the Quick−
 Start feedback allows a much larger congestion window.

 This effect essentially limits the maximum amount of data sent by
 Quick−Start to 65 kB, when the sender sends the Quick−Start request
 in the initial <SYN> segment. Also, the congestion window after
 quiting the Quick−Start rate pacing phase is at most 65 kB, as the
 congestion window is set to the amount of outstanding data at this
 point. This is an undesirable restriction for the Quick−Start
 mechanism, even if 65 kB is still much more than the initial
 congestion window in slow−start that is allowed by [RFC3390].

 This issue only occurs when Quick−Start is used in the three−way TCP
 connection setup procedure, and only in the direction of the client
 (connection originator) to the server. Still, this case is one of
 the planned usage scenarios for the Quick−Start TCP extension.

4.3. Possible remedy

 The limitation imposed by the window scaling could be addressed in
 two different ways: First, one could deviate from [RFC1323] and use a
 scaled receive window in <SYN> and <SYN,ACK> segments, if they
 include Quick−Start options. This would avoid the problem sketched
 in the previous section, but it is not compliant with the TCP
 specification and the currently deployed TCP implementations.

 This document describes a second, standard−compliant method: When a
 host receives a <SYN> segment with a Quick−Start option, it processes
 the option as described in [RFC4782]. Provided that the host has
 Quick−Start support enabled, the Quick−Start response is echoed back
 in the <SYN,ACK> segment. As explained, this segment cannot announce
 receive windows larger than 65 kB. If the receiver allocates a
 buffer space larger than 65 kB, an additional empty segment (without
 <SYN> flag) SHOULD be sent after the <SYN,ACK> segment, in order to
 announce the true receive window. The resulting message flow is
 depicted in Figure 1.

Scharf, et al. Expires August 30, 2007 [Page 6]

Internet−Draft Quick−Start TCP and Flow Control February 2007

 Sender Routers (approving QS request) Receiver
 −−−−−− −−−−−−− −−−−−−−−
 | |
 | −−>|
 | QS request |
 | TCP <SYN>, unscaled receive window |
 | window scaling and other options |
 | |
 | <−−|
 | QS response |
 | TCP <SYN,ACK>, unscaled receive window |
 | window scaling and other options |
 | |
 | <−−|
 | Additional acknowledgment |
 | TCP <ACK>, scaled receive window |
 | |
 | −−>|
 | QS report |
 | TCP <ACK> |
 | |
 | ==>|
 | ==>|
 | Rate paced data transfer |
 | |
 | <−−|
 | First new acknowledgment |
 V V

 Figure 1: Message sequence chart of the proposed mechanism

 After having received this additional acknowledgment, the sender is
 aware of the true available receive buffer. Provided that the Quick−
 Start request is approved on the path and that the receive window is
 sufficiently large, this allows the sender to send more than 65 kB
 during the Quick−Start rate pacing phase.

 Note that there is some degree of freedom as to when to send the
 additional acknowledgment. It can be sent immediately after the
 <SYN,ACK> segment, but this is not required in all cases. It is
 sufficient if the sender receives this segment before reaching the
 limit of the unscaled receive window. As a consequence, receivers
 may decide to delay the sending of this segment for some small amount
 of time.

Scharf, et al. Expires August 30, 2007 [Page 7]

Internet−Draft Quick−Start TCP and Flow Control February 2007

4.4. Discussion and deployment considerations

 The method proposed in this document is compliant with the TCP
 specifications: Sending empty segments to increase the receive window
 is implicitly allowed by [RFC0793], and in [RFC2581] it is clearly
 stated that sending an acknowledgment is allowed to update the
 receive window. Implementing the method thus should require changes
 in the receiver TCP implementation only.

 However, sending an empty acknowledgment shortly after a <SYN,ACK>
 segment is an atypical TCP communication event. The <SYN,ACK> and
 the additional segment could get reordered in the network. In this
 case, the sending host will typically ignore the additional segment,
 as it is still awaiting the <SYN,ACK>. Furthermore, middleboxes such
 as state−full firewalls might drop the additional acknowledgment.
 Even worse, this segment might also be dropped if a middlebox
 receives it earlier than the <ACK> segment from the sender. At this
 point in time, from the viewpoint of the middlebox, the bi−
 directional end−to−end TCP connection is not yet established. If the
 additional segment gets dropped, the sender gets informed about the
 unscaled receive window when the next new acknowledgment arrives,
 which may limit the benefit of Quick−Start. Delaying the additional
 acknowledgment for a short period of time could help to avoid such
 problems. Further investigation is needed to analyze whether such a
 delay is required.

 A possible alternative to the message flow in Figure 1 would be to
 piggyback the Quick−Start response on the additional acknowledgment
 segment instead of the <SYN,ACK>. However, this approach has several
 drawbacks and is therefore not recommended: First, the Quick−Start
 response would be received later, which could cause additional
 delays. Second, the <SYN,ACK> is immediately acknowledged by the
 <ACK> segment. The Quick−Start rate report can thus be piggybacked
 on this <ACK>. In contrast, if the Quick−Start response is included
 in the additional acknowledgment, the Quick−Start report has to be
 piggybacked to a data segment, i. e., it depends on the availability
 of application data whether and when the Quick−Start report is sent.

 It must be emphasized that the additional segment mandated by this
 document results in a certain network overhead. Given the fact that
 Quick−Start requests will be approved over under−utilized paths only,
 this overhead might not be a significant problem.

5. Security Considerations

 Quick−Start TCP imposes a number of security challenges. Known
 security threats as well as counter−measures are discussed in the

Scharf, et al. Expires August 30, 2007 [Page 8]

Internet−Draft Quick−Start TCP and Flow Control February 2007

 section "Security Considerations" of [RFC4782]. Since this document
 describes extensions to Quick−Start TCP, the security issues
 identified in [RFC4782] apply here, too.

 Sending an additional acknowledgment segment is an allowed behavior
 for a TCP connection endpoint and does not result in additional
 security threats. However, special care is needed when allocating
 large amounts of buffer space to newly established TCP connections,
 since this could create vulnerabilities to denial−of−service attacks.
 This issue may not be critical if Quick−Start is used in controlled
 environments only, as recommended by [RFC4782].

6. IANA considerations

 This document has no actions for IANA.

7. Acknowledgments

 The first author thanks Haiko Strotbek, Martin Koehn, Simon Hauger,
 and Christian Mueller for contributing to this document.

8. References

8.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP’s
 Initial Window", RFC 3390, October 2002.

 [RFC4782] Floyd, S., Allman, M., Jain, A., and P. Sarolahti, "Quick−
 Start for TCP and IP", RFC 4782, January 2007.

Scharf, et al. Expires August 30, 2007 [Page 9]

Internet−Draft Quick−Start TCP and Flow Control February 2007

8.2. Informative References

 [Dun06] Dunigan, T., "TCP auto−tuning zoo", available
 at http://www.csm.ornl.gov/~dunigan/net100/auto.html,
 February 2006.

 [LAJ+07] Liu, D., Allman, M., Jin, S., and L. Wang, "Congestion
 Control Without a Startup Phase", PFLDnet2007, Marina Del
 Rey, CA, USA, February 2007.

 [RFC2488] Allman, M., Glover, D., and L. Sanchez, "Enhancing TCP
 Over Satellite Channels using Standard Mechanisms",
 BCP 28, RFC 2488, January 1999.

 [RFC3481] Inamura, H., Montenegro, G., Ludwig, R., Gurtov, A., and
 F. Khafizov, "TCP over Second (2.5G) and Third (3G)
 Generation Wireless Networks", BCP 71, RFC 3481,
 February 2003.

 [SAF07] Sarolahti, P., Allman, M., and S. Floyd, "Determining an
 Appropriate Sending Rate Over an Underutilized Network
 Path", accepted for publication in Computer Networks,
 2007.

 [SB05] Smith, M. and S. Bishop, "Flow Control in the Linux
 Network Stack", available
 at http://www.cl.cam.ac.uk/~pes20/Netsem/linuxnet.pdf,
 February 2005.

Authors’ Addresses

 Michael Scharf
 University of Stuttgart
 Pfaffenwaldring 47
 D−70569 Stuttgart
 Germany

 Phone: +49 711 685 69006
 Email: michael.scharf@ikr.uni−stuttgart.de
 URI: http://www.ikr.uni−stuttgart.de/en/~scharf

Scharf, et al. Expires August 30, 2007 [Page 10]

Internet−Draft Quick−Start TCP and Flow Control February 2007

 Sally Floyd
 ICIR (ICSI Center for Internet Research)

 Phone: +1 (510) 666−2989
 Email: floyd@icir.org
 URI: http://www.icir.org/floyd/

 Pasi Sarolahti
 Nokia Research Center
 P.O. Box 407
 FI−00045 NOKIA GROUP
 Finland

 Phone: +358 50 4876607
 Email: pasi.sarolahti@iki.fi

Scharf, et al. Expires August 30, 2007 [Page 11]

Internet−Draft Quick−Start TCP and Flow Control February 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on−line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf−ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Scharf, et al. Expires August 30, 2007 [Page 12]

