Increasing Capacity of Cellular WiMAX Networks by Interference Coordination

Marc Necker
Institute of Communication Networks and Computer Engineering
University of Stuttgart, Germany
marc.necker@ikr.uni-stuttgart.de

ITG FG 5.2.1, Essen
November 22, 2007
Outline

• Introduction and motivation
 - Requirements and challenges in cellular networks
 - Introduction to OFDMA networks

• Interference mitigation techniques
 - Fractional Frequency Reuse (FFR)
 - Interference Coordination (IFCO)

• Coordinated Fractional Frequency Reuse
 - Concept and architecture
 - Algorithm description

• Performance Evaluation
 - Comparison with conventional systems
Scenario

- Cellular OFDMA network according to 3GPP Long Term Evolution (LTE) or IEEE 802.16e (WiMAX)

Requirements

- High aggregate throughput serve as many users as possible
- High cell edge throughput good performance even with weak signal

Major problem: Inter-cellular interference
Orthogonal Frequency Division Multiple Access

- Based on Orthogonal Frequency Division Multiplex (OFDM)
 - subdivision of frequency spectrum into subcarriers
 - well suitable for multi-path fading environments
- Basis of several emerging cellular standards
e.g., 802.16e/m (WiMAX), 3GPP LTE
Orthogonal Frequency Division Multiple Access

- Based on Orthogonal Frequency Division Multiplex (OFDM)
 - subdivision of frequency spectrum into subcarriers
 - well suitable for multi-path fading environments
- Basis of several emerging cellular standards
 e.g., 802.16e/m (WiMAX), 3GPP LTE

Example: 802.16e MAC Layer (“mobile WiMAX”)
- Frequency-diverse (PUSC zone, FUSC zone) and frequency-selective modes (AMC zone)
Orthogonal Frequency Division Multiple Access

- Based on Orthogonal Frequency Division Multiplex (OFDM)
 - subdivision of frequency spectrum into subcarriers
 - well suitable for multi-path fading environments
- Basis of several emerging cellular standards e.g., 802.16e/m (WiMAX), 3GPP LTE

Example: 802.16e MAC Layer ("mobile WiMAX")

- Frequency-diverse (PUSC zone, FUSC zone) and frequency-selective modes (AMC zone)
- AMC zone (Adaptive Modulation and Coding)
 - allocation of consecutive subchannels for the transmission to one terminal
 - allocations have rectangular shapes
 - allows frequency-selective scheduling
 - well suitable for interference coordination
- Major issue in OFDMA: inter-cellular interference
• **Major issue in OFDMA: inter-cellular interference**
 - standard solution: frequency reuse pattern
 - disadvantage: waste of precious frequency resources
• **Major issue in OFDMA: inter-cellular interference**
 - standard solution: frequency reuse pattern
 disadvantage: waste of precious frequency resources
 - optimization: Fractional Frequency Reuse (FFR)
Major issue in OFDMA: inter-cellular interference
- standard solution: frequency reuse pattern
- optimization: Fractional Frequency Reuse (FFR)
Major issue in OFDMA: inter-cellular interference
- standard solution: frequency reuse pattern
- optimization: Fractional Frequency Reuse (FFR)
Major issue in OFDMA: inter-cellular interference
- standard solution: frequency reuse pattern
- optimization: Fractional Frequency Reuse (FFR)
- Usage of directional antennas to lower inter-cellular interference
 Additional coordination necessary interference coordination (IFCO)
Conventional Fractional Frequency Reuse (FFR)

- Assignment of mobiles to reuse 1 or 3 based on position or SINR
- Reuse 1 & reuse 3 areas may or may not be on same frequency range
- Power levels may or may not be adjusted depending on area
Conventional Fractional Frequency Reuse (FFR)

- Assignment of mobiles to reuse 1 or 3 based on position or SINR
- Choice of reuse partition depending on cell sector (static)

- Reuse 1 & reuse 3 areas may or may not be on same frequency range
- Power levels may or may not be adjusted depending on area
Idea: Reduce interference by optimized and coordinated dynamic choice of reuse partition (semi static or dynamic)

interference coordination
• Base stations communicate relevant information to central coordinator
• Central coordinator assigns mobile terminals to resource partitions in a coordinated fashion
Coordination of Resource 3 Partitions

- **Approach**
 - construction of an interference graph G in central coordinator
 - nodes $m_i \in M$
 - edges $e_{ij} \in E$ (non-directional)
 - assignment of resource partitions based on interference graph
 - communication of resource partitions to base stations

- **Interference graph**
 - based on global knowledge collected from all base stations
 - edges represent critical interference relations in-between terminals
 - connected terminals should not be served on the same resource (time/frequency slot)
Creation of Interference Graph

- Mobile terminal m_5
- Mobile terminal m_{10}
- Mobile terminal m_{12}

Cell border

Interference levels:
- m_5: -83 dBm
- m_{10}: -89 dBm
- m_{12}: -91 dBm
- m_9: -92 dBm
- m_{42}: -94 dBm
Creation of Interference Graph

- Calculation of signal strength of interferers for a particular mobile terminal m_j

<table>
<thead>
<tr>
<th>Interference by Mobile Terminal</th>
<th>Interference Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>-80 dBm</td>
</tr>
<tr>
<td>m_{12}</td>
<td>-93 dBm</td>
</tr>
<tr>
<td>m_8</td>
<td>-94 dBm</td>
</tr>
<tr>
<td>m_{20}</td>
<td>-99 dBm</td>
</tr>
<tr>
<td>m_{42}</td>
<td>-99 dBm</td>
</tr>
<tr>
<td>m_{35}</td>
<td>-99 dBm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interference by Mobile Terminal</th>
<th>Interference Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_5</td>
<td>-83 dBm</td>
</tr>
<tr>
<td>m_8</td>
<td>-89 dBm</td>
</tr>
<tr>
<td>m_{10}</td>
<td>-91 dBm</td>
</tr>
<tr>
<td>m_9</td>
<td>-92 dBm</td>
</tr>
<tr>
<td>m_{42}</td>
<td>-94 dBm</td>
</tr>
<tr>
<td>m_{30}</td>
<td>-98 dBm</td>
</tr>
</tbody>
</table>
Creation of Interference Graph

- Calculation of signal strength of interferers for a particular mobile terminal m_j
- Blocking of strongest interferers such that a desired minimum SIR D_S is achieved

Interference by Mobile Terminal

<table>
<thead>
<tr>
<th>Mobile Terminal</th>
<th>Interference Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>-80 dBm</td>
</tr>
<tr>
<td>m_{12}</td>
<td>-93 dBm</td>
</tr>
<tr>
<td>m_8</td>
<td>-94 dBm</td>
</tr>
<tr>
<td>m_{20}</td>
<td>-99 dBm</td>
</tr>
<tr>
<td>m_{42}</td>
<td>-99 dBm</td>
</tr>
<tr>
<td>m_{35}</td>
<td>-99 dBm</td>
</tr>
</tbody>
</table>

Interference by Mobile Terminal

<table>
<thead>
<tr>
<th>Mobile Terminal</th>
<th>Interference Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_5</td>
<td>-83 dBm</td>
</tr>
<tr>
<td>m_8</td>
<td>-89 dBm</td>
</tr>
<tr>
<td>m_{10}</td>
<td>-91 dBm</td>
</tr>
<tr>
<td>m_9</td>
<td>-92 dBm</td>
</tr>
<tr>
<td>m_{42}</td>
<td>-94 dBm</td>
</tr>
<tr>
<td>m_{30}</td>
<td>-98 dBm</td>
</tr>
</tbody>
</table>

Cell border

Mobile terminal m_{12}

Interference blocked by interference graph

Mobile terminal m_5

Interference level

Calculation of signal strength of interferers for a particular mobile terminal m_j
Creation of Interference Graph

- Calculation of signal strength of interferers for a particular mobile terminal m_j
- Blocking of strongest interferers such that a desired minimum SIR D_S is achieved
- Blocked terminals are connected by edge in interference graph
Assignment of Resource Partitions

- Treat resource partitions as colors of graph
- Resource partitions can be assigned to mobile terminals by coloring of the interference graph
 - graph coloring is NP hard
 - large number of heuristics: genetic algorithms, simulated annealing, tabu search, other heuristics (e.g., Dsatur)
Mapping of colors to Resource Partitions

![Diagram showing mapping of colors to resource partitions]

Virtual frame duration must be adapted to number of colors
Procedure

- Communication of all required information to central coordinator
- Calculation of interference graph
- Graph Coloring
- Communication of colors to base stations
- Mapping of colors to resource partitions

Important Parameters

- update period: $T_{C,\text{period}}$
- delay: $T_{C,\text{delay}}$
Performance Evaluation

Scenario

• Event-driven simulation model implemented using IKR SimLib
• Hexagonal scenario described before with wrap-around
• Mobility model
 - 9 mobile terminals per cell sector
 - 30 km/h, random direction mobility model
• Traffic model
 - greedy traffic sources in downlink direction
 - throughput measured at IP level
• Detailed MAC and Physical layer model with path loss and shadowing
• Metrics:
 • Aggregate sector throughput
does not take into account fairness towards cell edge users
 • 5 % quantile of the individual throughputs of all mobiles
 - terminals close to cell center have high throughput
 - terminals close to cell edge have low throughput
 ✶ corresponds to throughput of terminals close to cell edge
• Reuse 3 system achieves good **aggregate** performance and good **cell edge** performance
Throughput Performance

- Reuse 1 system achieves better aggregate performance but falls short with respect to cell edge performance.
• **Conventional Fractional Frequency Reuse, locally coordinated**
 - achieves great increase in aggregate performance
 - falls short with respect to cell edge performance
Throughput Performance

- **Coordinated Fractional Frequency Reuse**
 - achieves good increase in aggregate and cell edge performance
 - allows to trade off cell edge and aggregate performance on a high level
Impact of Signaling Delays

- Increased signaling delay $T_{C,\text{period}}$
 - leads to graceful degradation of cell edge performance
 - has much less impact on aggregate performance (not shown here)
Impact of Signaling Delays

- Increased signaling delays $T_{C,period}$ and $T_{C,delay}$
 - lead to graceful degradation of cell edge performance
 - have much less impact on aggregate performance (not shown here)
Big increase close to base stations
Good coverage at cell edge with coordinated FFR

$T_{C,\text{period}} = 2s, \quad T_{C,\text{delay}} = 1s$

$D_{S,o} = 0dB, \quad D_{S,i} = 20dB$
• **Frequency spectrum is one of the most precious resources**
 - operators strive to get maximum performance out of limited spectrum

• **Possible solutions**
 - denser planning of base station grid
 - high additional cost
 - deployment of advanced algorithms, such as interference coordination
 - capacity improvements achievable by much lower cost

• **Coordinated Fractional Frequency Reuse**
 - algorithm for distributed and dynamic interference coordination
 - low complexity scheme based on central coordinator
 - communication with central coordinator in intervals in the order of ≥ 500 ms
 - performance improvements of about 50% (compared to Reuse 3)
 - with respect to aggregate throughput (maintaining cell edge throughput)
 - with respect to cell edge throughput (maintaining aggregate throughput)