Performanceof TCPand HTTP Proxiesin UM TS Networks

Marc Necker!, Michael Scharf!, Andreas Weber?2

Hnstitute of Communication Networ ks and Computer Engineering
University of Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart
{necker,scharf}@ikr.uni-stuttgart.de

2Alcatel SEL AG, Research and I nnovation
Lorenzstr. 10, D-70435 Stuttgart
Andreas.Weber @alcatel.de

Abstract: It is well known that the large round trip time
and the highly variable delay in a cellular network may de-
grade the performance of TCP. Many concepts have been
proposed to improve this situation, including performance
enhancing proxies (PEP). One important class of PEPs
are split connection proxies, which terminate a connection
from a server in the Internet in a host close to the Radio
Access Network (RAN) and establish a second connection
towards the mobile User Equipment (UE). This connection
splitting can be done either purely on the transport layer
(TCP proxy) or on the application layer (HTTP proxy).
While it is clear that an application layer proxy also infers
the splitting of an underlying transport layer connection,
the performance of web applications may be essentially dif-
ferent for both approaches. This paper first investigates
the TCP connection behavior of the Mozilla web browser.
Subsequently, the performance of TCP and HTTP prox-
ies in UMTS networks is studied under different scenarios
and for different HTTP configurations by means of emula-
tion.

1. Introduction

The access to the World Wide Web is one of the
most important applications in today’s Internet. Since
UMTS networks provide much higher data rates com-
pared to GSM-based cellular networks, surfing the Web
is expected to be a very promising service. The charac-
teristics of mobile networks differ from fixed networks
due to the error-prone radio channel and terminal mobil-
ity. Therefore, it is important to understand how wire-
less web access can be improved. This usually requires
cross-layer optimization of all involved protocol layers,
in particular including the transport layer.

There are two main approaches to address this issue:
First, the performance can be optimized end-to-end by
using well-tuned protocol mechanisms, i.e. by using op-
timized TCP versions. This typically requires modifi-
cations in the protocol stacks in the end-systems and is
thus difficult to deploy in the global Internet. Alterna-
tively, a performance enhancing proxy (PEP) [1] can be
used between the radio access network and the Internet.
These proxies can operate at different protocol layers.
In the case of web traffic, the proxy can either operate
at the transport layer (TCP proxy) or at the application
layer (HTTP proxy). While HTTP proxies are already
present in todays networks, TCP proxies have not been
deployed yet. However, a number of approaches have
been presented in literature, such as Indirect TCP [2] and
Multiple TCP [3].

In [17], Chakravorty et al. evaluated the WWW per-
formance in GPRS networks by means of measurements.

A comprehensive discussion of proxies in general, and
how TCP proxies can improve the throughput of a TCP
download session can be found in [5]. In this paper, we
focus on the WWW as an application. Consequently, we
do not limit ourselves to the transport layer only. In-
stead, we explicitly take into account the behavior of
the WWW application, i.e. the way TCP connections are
handled by web browsers. In particular, we study the be-
havior of the Mozilla web browser with different HTTP
configurations and evaluate the performance gain of TCP
and HTTP proxies compared to a non-proxied scenario
by means of emulation.

This paper is organized as follows. In section 2., we
give a brief survey of PEPs. In section 3., we describe the
scenario and emulation environment used for our stud-
ies. Finally, section 4. presents and discusses the results.

2. Performance Enhancing Proxiesin Mo-
bile Networks

The use of PEPs in mobile networks has been studied
extensively. Most of the research has been motivated by
the fact that TCP does not perform well in the presence
of non congestion related packet loss. On the other hand,
e.g. in UMTS, for PS traffic over DCH, the RLC layer
can be configured to provide excellent reliability by us-
ing Forward Error Correction (FEC) and Automatic Re-
peat reQuest (ARQ). Furthermore, the UTRAN ensures
in-order delivery. As a consequence, well-configured
TCP connections [6] hardly benefit from PEPs which
perform local error recovery and in-order delivery [5].
However, UTRAN error protection comes at the cost of
higher latency and delay jitter [7].

High latencies and high bandwidth delay products are
a challenge for TCP. First, the connection establishment
takes longer. Second, if the bandwidth delay product
is greater than the transmitter window size, the pipe
between server and client cannot be fully utilized.The
transmitter window size is reduced at the start of a TCP
connection (Slow Start), but also after a Retransmission
Timeout (RTO), which causes the system to perform
Slow Start followed by Congestion Avoidance. Further-
more, the transmitter window size may never exceed the
advertised window size of the receiver which may be re-
duced, e.g. due to buffer problems in the receiver. Be-
side these issues, round trip delay jitters in the order of
seconds can trigger spurious TCP timeouts, resulting in
unnecessarily retransmitted data [8]. In the following,
we will give a brief overview how these problems can be
mitigated by different proxy concepts [1].

2.1. Protocol Helpers

Protocol helpers are able to add, manipulate, resort,
duplicate, drop or delay messages. This includes data
messages as well as acknowledgments. However, they
neither terminate a connection, nor modify user data.
The classical example for a protocol helper is the Berke-
ley Snoop Protocol [9], which buffers unacknowledged
TCP segments and retransmits them locally in the RAN
in case of a packet loss. Moreover, acknowledgments
are filtered in order to hide packet losses from the TCP
sender. However, e.g. for UMTS DCH channels, such
a local recovery is done much more efficiently by the
UMTS RLC layer.

Protocol helpers have also been proposed to improve
TCP performance in the presence of spurious timeouts,
either by filtering redundant segments [10], by buffer-
ing of acknowledgments [11] or by manipulating the re-
ceiver advertised window [12]. However, none of these
approaches can mitigate problems caused by high band-
width delay products.

2.2. TCP proxies

A TCP proxy is an entity which, from the perspective
of an Internet server, is located before the RAN. It splits
the TCP connections into one connection in the fixed net-
work part and one connection in the mobile network part.
TCP proxies are a well-known approach to improve TCP
performance in wireless networks [2, 3] and have exten-
sively been studied in literature. For instance, Meyer et
al. [5] showed that a TCP proxy can significantly im-
prove TCP throughput, especially in case of high data
rates (i.e. 384kBit/s in UMTS).

TCP proxies shield the mobile network from potential
problems in the Internet. Usually, the transmission delay
in the fixed network part is much smaller compared to
the delay in the mobile network. Hence, a TCP connec-
tion in the fixed network part recovers much faster from
packet losses. Another advantage is the high flexibility,
since TCP proxies can be modified without great effort.
In particular, the PEP’s TCP sender directed towards the
wireless link can use optimized algorithms, which might
not be suitable for the worldwide Internet.

2.3. HTTP proxies

HTTP proxies are well understood and commonly
used in wireline networks. Typically, the user can decide
whether a proxy shall be used by configuring the web
browser accordingly. As with all application layer prox-
ies, HTTP proxies split the underlying transport layer
connections. Additionally, they cache frequently ac-
cessed data and thus may reduce page loading times?.
The proxy reduces the number of DNS lookups over the
wireless link as it can perform these lookups on behalf
of the web browser. If the persistence connection feature
in HTTP is activated, it may also reduce the number of
TCP connections, since the user equipment usually ac-
cesses the same proxy for the duration of a session. It
can then maintain one or several persistent TCP connec-
tions to that proxy, as compared to several shorter lasting
connections when connecting to different servers in the
Internet. This highly improves the performance as the

INote that this might not be possible for dynamic pages

overhead of connection setup is removed and the con-
nections are less likely to be in slow start.

2.4. Implicationsof Using PEPs

All PEPs violate the end-to-end argument and the pro-
tocol layering, two fundamental architectural principles
of the Internet [1]. They require additional processing
and storage capacity and have limited scalability. Fur-
thermore, a proxy is an additional error source, and end-
systems might not be able to correct errors occurring
within a proxy. The location of a PEP within the net-
work architecture has to be chosen very thoroughly since
it might be necessary to transfer state information if the
route from the user equipment to the Internet changes.
Finally, proxies are not compatible to encryption and
digital signature on the IP-layer, i.e. IPsec. This implies
that a PEP might also prevent the usage of Mobile IP.

Border et al. disadvise proxies that automatically in-
tervene in all connections [1]. Instead, it is recom-
mended that end users should be informed about the
presence of a proxy and should have the choice whether
to use it or not. Such a procedure would favor the de-
ployment of application-specific proxies.

3. Scenario and Emulation Environment

3.1. Network scenario and emulation environment

The basic scenario is shown in Fig. 1 (top). We con-
sider a single-cell environment, where the User Equip-
ment (UE) on the left side connects to the Node B via
a 256kBit/s dedicated channel (DCH) in the uplink and
the downlink direction. The Node B is connected to the
Radio Network Controller (RNC), which itself is con-
nected to the Internet via the 3G-SGSN and 3G-GGSN
of the cellular system’s core network. Finally, the UE
establishes the data connection with a web server in the
Internet. The Internet and core network were assumed
to introduce a constant delay 7., and randomly lose IP
packets with a probability of P;s.

The UTRAN was modeled in detail with all its rele-
vant protocols. Fig. 2 gives a high-level overview of the
UTRAN model. The IP packets from an IP source are
first buffered in an internal buffer. Afterwards, they are
segmented/concatenated into radio blocks. The follow-
ing ARQ mechanism protects from frame losses, which
may occur on the physical layer. The convergence layer
was neglected, since it only introduces a small overhead
in the considered single cell environment. The ARQ pa-
rameters where chosen according to the optimal values

UTRAN Core Network
zgyj
RNC SGSN [GGSN Server
Node B
Detailed UTRAN model Fixed Delay and Drop Probability
T\Ne{v Ploss

UTRAN Core Network
@
RNC B SN Server
TCP/HTTP
Proxy
Detailed UTRAN model Fixed Delay and Drop Probability

Tinetr Ploss
Figure 1: UMTS Scenario without (top) and with TCP
or HTTP proxy (bottom)

zero delay

| IP source and sink | IP source and sink

¥ UE RNC[=S

!

Segmentation
Concatenation

Segmentation
Concatenation

—

| 45msQ Transport and Logical Channels IJ
[} ¥ T
1 Y

| Physical Layer IJ

Figure 2: UTRAN model

found in [7]. The loss probability for a MAC frame on
the air interface was set to 0.2 and 0.1 in the down- and
uplink, respectively. As indicated in Fig. 1 (bottom), we
assume the TCP and HTTP proxy to be located some-
where within the core network, where the delay and IP
loss probability from the proxy towards the UTRAN is 0.

This scenario is mapped to the emulation setup shown
in Fig. 3, which consists of four standard Linux-PCs.
The heart of the emulation setup is the UTRAN emu-
lation, which is based on the emulation library devel-
oped at the IKR [13]. The emulation directly maps the
IP sources and sinks from the model in Fig. 2 to net-
work sockets on the IP layer. IP packets are sent from the
server-PC, which runs an Apache 1.3.29 web server, to
the emulator. The emulator delays (and possibly drops)
the IP packets according to the parameters desired for
the core network and the Internet. Afterwards, the pack-
ets may be forwarded to the proxy-PC, which runs a
Squid 2.5 HTTP proxy or a hand-written TCP proxy. Fi-
nally, the emulator delays the IP packets according to
the UTRAN model and forwards them to the client-PC,
which runs a Mozilla 1.6 web browser. Note that, in
contrast to the model described above, there is a small
delay due to the networking overhead between the proxy
PC and the emulation PC. This is an acceptable circum-
stance, since the delay within the UTRAN is several or-
ders of magnitude higher.

The Mozilla web browser was automated using an
XUL-script, which automatically surfs a given list of
web-pages. A new page was requested from the web
server two seconds after a page and all its inline objects
were completely loaded and displayed. The cache size
of Mozilla was set to 1MByte, which is large enough
to cache small images, such as arrows and bullet points,
during one list cycle but too small to cache pictures be-
longing to any actual content.

To a large extent, Apache and Squid were run with
their default configurations. Squid’s pipeline_prefetch

Client Emulation Proxy
(Mozilla 1.6 web-browser) (UTRAN) Squid 2.5 HTTP-proxy, TCP-proxy ~ (Apache 1.3.29 web-server)

100MBps

Ethernet

Figure 3: Emulation Setup

option, which supposedly improves the performance
with pipelined requests, was turned on for all scenar-
ios with activated HTTP pipelining. In a first trial,
Squid was run in proxy-only mode, i.e. with deacti-
vated caching.In a second trial, 1MByte of disc cache
and 1MByte of memory cache were added, which again
is large enough to cache small objects, but too small to
cache actual content during one list cycle. Additionally,
the Squid cache was forced to always use the objects
from its cache, regardless of the expiry date reported
from the web server. This implies that objects are only
removed from the cache due to its limited storage capac-
ity. We believe that this configuration quite well imitates
the situation of a highly loaded proxy which has to serve
millions of pages per day to many different users.

The TCP proxy simply opens another TCP connection
towards the server for each incoming connection from
the client, and directly writes any data received from ei-
ther side to the respective other socket.

Throughout our paper, we do not consider DNS
lookups. On the one hand, DNS lookups can impose a
significant waiting time at the beginning of a page load,
especially if the network’s Round Trip Time (RTT) is
large (as it is in mobile networks). On the other hand,
they have to be done only once upon the first access to
a particular server within a session. Therefore, their fre-
quency is hard to determine and model. We will there-
fore omit the effect of DNS lookups, but keep in mind
that this simplification favors scenarios with no proxy
and with a TCP proxy.

3.2. WWW service scenario

On the local web server, a snapshot of the web-site
www. t agesschau. de and related sites was created.
Figure 4 shows the histogram of all inline images con-
tained on all web-pages within one Mozilla list cycle.
This histogram counts identical images on one particular
web-page multiple times. Additionally, Fig. 4 contains
the histogram of the number of actually transferred im-
ages, which are less due to the browser’s internal cache.
As it is the case with most web-sites, there is a strong
tendency towards many small helper images, such as
transparent pixels, bullet images and the like. Figure 5
shows the distribution of inline images across the differ-
ent involved domains. Additionally, the figure shows the
distribution of the GET requests issued to the different
domains within one list cycle. The majority of accesses
goes to the main t agesschau. de-server. In addi-
tion, several web-pages and inline objects are fetched
from related regional web-sites, such as ndr. de for
news from northern Germany or swr . de for news from
southern Germany. Moreover, there are several accesses
to web servers responsible for tracking access statistics
(i vwbox. de, st at . ndr. de).

4. Results

4.1. TCP connection behavior

We will first discuss Mozilla’s TCP connection behav-
ior for different system configurations. Figure 6 illus-
trates the connection behavior for a direct connection to
the web server with no proxy. The figure shows the dura-

I T T T T T
10000

Histogram of inline images
+—— Histogram of transferred images

1000 £

10

number of inline images / transferred images

T 0 I, \ |

|
0 10 20 30 40 50 60 70
image size [kBytes]

o5}
o
© L
o

Figure 4: Histogram of inline images and trans-
ferred images

tion of all TCP connections on their corresponding port
numbers over the time?. No automated surfing was used
here. Instead, the main page ww. t agesschau. de
was manually accessed at time t=0s, and subsequent sub-
pages were accessed at times t=40s, t=60s and t=80s.
The browser was terminated at t=100s. HTTP version
was 1.1 with deactivated persistent connections and no
pipelining. The browser’s cache was cleared at the be-
ginning of the measurement. This protocol configura-
tion forces the web browser to open a separate TCP con-
nection for each inline object which results in 414 TCP
connections for loading all four pages. This implicates
a considerable overhead with respect to delay and trans-
mitted data, since each TCP connection needs one RTT
to be established and at least one RTT to be torn down
[14]. Especially in networks which exhibit a high RTT,
the performance will suffer from this behavior.

The situation can be improved by activating persis-
tent connections in HTTP [15]. Figure 7 shows the
new pattern of TCP connections, with the destination
server annotated for each TCP connection. The number
of TCP connections reduces to only 16 in total. Note
that TCP connections to the server hosting the main
web-page are kept persistent for a long time, while con-
nections to servers serving inline objects are torn down
much faster. However, this relatively fast connection
teardown is not caused by the web browser, but by the
web server, i.e. the browser has no influence on it. In-
stead, it highly depends on the settings of the Apache
web server, which provides two main parameters to con-
trol the teardown of persistent connections, namely Max-
KeepAliveRequests and KeepAliveTimeout. The first pa-
rameter specifies the maximum number of objects that
may be transmitted over a persistent connection before
it is being closed, while the second parameter indicates
the time after which a persistent connection is closed if
it became idle. The default values of these parameters
are 100 and 15 seconds, respectively. Since, most likely,
there are many web-sites using the default values, we

?Note that not all consecutive port numbers are used within the ses-
sion.

10000 :
Elements of different servers

I GET requests to different servers

T T T T

1000

T T TTTTTT

100

T T T

10

Number of elements / GET requests

T T TTTTTT

[

TTTIT

& +§z +€>?‘ +§>e, && F ¥ @ @ X R @

3 b ¥ T FFFFFE
o A\vpo \ﬁ})o 4*“00 RS \&Qo N S‘\é & N & @ \’6
& & &Y & PO qs@ § ‘°° $§\ & §ﬁ‘
&‘3\ & &L & & S >
& &

Figure 5: Histo@ram of elements of different
servers and GET requests to different servers

will use the same values for our studies. Figure 7 nicely
reflects the value of KeepAliveTimeout for servers serv-
ing inline objects.

With persistent connections enabled in HTTP, the
number of connections reduces, leading to less overhead
with the potential of faster loading times. On the other
hand, the client has to wait for the response from the
server for each requested inline object before it can issue
another request. This implies that there may be far fewer
outstanding requests as compared to non-persistent con-
nections, which is a potential performance inhibitor in
networks with large RTTs. This situation can be greatly
improved by activating pipelining in HTTP 1.1, which
allows the request of multiple inline objects over the
same persistent connection without waiting for each re-
sponse.

Finally, we will consider the connection behavior if
an HTTP proxy is used. RFC 2616 [15] states that
“talking to proxies is the most important use of persis-
tent connections”. The reason is that multiple different
servers can be accessed via the same persistent client—
proxy connection. The connection behavior in such a
scenario is shown in Fig. 8. It is now no longer possible
to associate a TCP connection with a particular server.
The chart shows that the number of connections almost
halfened to 9. Again, all but one of the connections that
are closed before the end of the session are terminated
by the WWW proxy.

We do not need to consider the case of a TCP proxy
here, since it does not change the semantics of an HTTP
connection.

4.2. Pageloadingtimes

In this section, we investigate the page loading times
for ideal Internet conditions. In particular, we chose
Tinet = 20ms and P, = 0. Table 1 lists the mean
and median of the page loading times for all considered
proxy scenarios and different HTTP 1.1 configurations.
For the Squid scenario, we have provided two values per
table cell. The first one was obtained with Squid acting
as a proxy only, the second one with Squid additionally
caching web objects.

54660 [~ . E

54640 —

Ny,

54620 |- -

54600 [~

h,
™ W

ey

TCP port number
w
N
(421
(o]
o
T
|

54560 |-

"y, .

54540 |- H —

54520 |- _

54500 -
0 20 40 60 80 100 120
time [s]

time | accessed page

0Os www. t agesschau. de

40s www. t agesschau. de/ r egi onal

60s www. t agesschau. de/ hanbur g/

0, 1209, SPML3150_NAVSPML1178, 00. ht m
80s wwwl. ndr. de/ ndr _pages _st d/

0, 2570, O D460712_REF960, 00. ht ni
100s | Mozillawas terminated.

Figure 6: Timeline of TCP connections with no proxy and no persistent HTTP connections

ndr.ivwbox.de
stat.ndr.de &———=»

wwwl.ndr.de, &—=9

54710 — —

www1.ndr.de e——»

tagessch.ivwbox.de
e————estat.ndr.de
.ndr.de

www.ndr.de hau.d

54700 |- ¢ —T®www.tagesschau.de _|

tagessch.ivwbox.de
——®stat.ndr.de b

TCP port number

54690 — —
tagessch.ivwhox.de

—————® stat.ndr.de

—®gfx finanztreff.de

1

www.tagesschau.de
www.tagesschau.de

54680 [~

0 20 40 60 80 100 120
time [s]

Figure 7: Timeline of TCP connections with no
proxy and persistent HTTP connections

For the non-proxied scenario and the scenario with a
TCP proxy, it is obvious that HTTP performs best when
persistent connections and pipelining are activated, and
performs worst if both is deactivated. In contrast, ac-
cording to information in [16], Squid does not support
pipelined requests towards servers very well. While it
accepts pipelined requests from the client side, it trans-
forms them into parallel requests, where no more than
two requests from a pipeline can be fetched in paral-
lel. This drawback is reflected in Table 1, since, with
pipelining, performance does not improve compared to
the non-pipelined case.

When comparing the different proxy scenarios, we
can see that a proxy not necessarily improves the per-
formance. For all considered HTTP configurations, the
TCP proxy worsens the performance compared to the
non-proxied case, which results from the overhead in-
troduced by the proxy. However, the proxy could sig-
nificantly increase the performance under two circum-
stances: First, if the fixed part of the connection was non-
ideal, the TCP proxy could efficiently recover from lost
packets within the fixed part of the network and also mit-
igate the effects of long RTTs in the fixed network (see
section 4.3.). The second circumstance is a proxy with
an optimized TCP sender towards the UE. The most effi-
cient and simple measure hereby certainly is an increase

54760 |- —

54750 [— -

TCP port number

54740 _

0 20 40 60 80 100 120
time [s]

Figure 8: Timeline of TCP connections with HTTP
proxy and persistent connections

of the initial congestion window, since a small conges-
tion window will prevent the full usage of the available
bandwidth within the RAN for a relatively long time at
the beginning of a TCP connection. This results from
the long RTT in mobile networks (see [17] for measure-
ments in GPRS networks on this issue).

The same can be said for the Squid scenario and
non-persistent HTTP connections with no pipelining.
If persistent connections are allowed, we observe
a significant performance increase compared to the
non-proxied scenario. This goes well along with the
observations made in section 4.1.: The UE can now
maintain persistent HTTP connections to the proxy,
even if the requests are issued across different servers.
This leads to fewer TCP connection establishments and
teardowns across the RAN. If pipelining is activated, the
performance in the non-proxied scenario significantly
increases, whereas the performance when using Squid
remains about the same. The reason is again the lack of
pipelining support in Squid.

4.3. Internet packet losses

Studies of the Internet packet dynamics, such as in

[18], and recent measurements [19] reveal that typical

IP-packet loss probability on the Internet are on the order
of 0 to 5 percent, or even more in very bad cases.

137 T T T
@—e NO proxy
m——m TCP proxy
+—= Squid proxy
Squid proxy, increased persistency

= -
© o =)

co

mean of page loading time [s]

0 0.01 0.02 0.03 0.04 0.05
P

loss

Figure 9: Mean of page loading times, persistent
HTTP connections without pipelining

[
w

! e——e N0 proxy
=———a TCP proxy
+— Squid proxy
Squid proxy, increased persistency

= =
o = o

median of page loading time [s]
©

/

0 0.01 0.02 0.03 0.04 0.05
P

Figure 10: Median of page loading times, persis-
tent HTTP connections without pipelining

no persistent connections persistent connections
Mean | Median Mean | Median

no pipelining 8.2s 6.3s 7.73s 5.95s 0 proxy

pipelining — — 6.225 4.96s
no pipelinin 8.56s 6.47s 8.22s 6.16s

EiEenmng — — 6.745 4945 | TCPproxy
no p?pel?ning 8.85s/8.81s 6.67s/6.58s 7.02s / 6.92s 5.35s /5.26s Squid proxy

pipelining — — 7.09s/6.91 5.41s/5.40s

Table 1: Mean values and median for loading time

Figures 9 and 10 plot the mean and median of the page
loading time over the Internet packet loss P if persis-
tent connections are activated but pipelining is deacti-
vated. Figure 11 and 12 shows the same but with acti-
vated pipelining. Squid is considered with caching en-
abled only. As it can be expected from previous studies
(e.g. [5]), the mean and median of the page loading time
increase in the non-proxy case as Pjyss increases. It is
interesting to observe that this increase is approximately
linear with Pg.

A similar increase can be observed if a TCP proxy is
used. However, the increase is much smaller. We already
noted that the performance with TCP proxy is worse
compared to the non-proxied case if Pogs = 0. AS Plogs
increases, the advantage of the proxy becomes obvious,
as it outperforms the non-proxied case for Pjss > 0.01.
We should expect a similar behavior for an HTTP proxy.
However, we observe a strong performance decrease in
the Squid scenario as P, increases. For both HTTP
configurations, the Squid performance eventually drops
far below the performance of the TCP proxy. This be-
havior is not intuitive, since both proxies split the TCP
connection and should be able to quickly recover from
packet losses in the Internet.

The reason for this is the following. In the non-
proxied case, for each displayed page, the web browser
has to issue many GET requests to the web server. That
means, persistent HTTP connections are usually busy.
Hence, they will not be closed by the web server due
to a timeout caused by the KeepAliveTimeout timer, but
only due to reaching the maximum number of transmit-

ted inline objects on a connection. Consequently, the
TCP connections will be in congestion avoidance most
of the time, unless multiple TCP packets are lost per
RTT. The same thing applies to the TCP proxy scenario.
In contrast to this, the Squid proxy has an essentially
different connection behavior towards the web server.
Since it caches most of the web objects, the persistent
connections towards the web server are mostly idle and
frequently get closed by the web server. This implies that
the connections towards the web server are in slow-start
very often. That is, a TCP connection is more likely to
be in slow-start when a packet loss occurs, which results
in long recovery times®. The final consequence is that
the link from the HTTP proxy to the web server may be
idle for quite a long time, while the web browser is still
waiting for objects to be served from the proxy.

Squid performance can be improved by setting
the Apache parameters MaxKeepAliveRequests and
KeepAliveTimeout to higher values. Here, we set it to in-
finity and 150s, respectively. Now, Apache waits much
longer before closing any persistent connections. Fig-
ures 9 through 12 contain the measured results obtained
in the Squid scenario, labeled with increased persis-
tency. Looking at the non-pipelined case, the Squid
proxy now behaves as we expect it: the mean loading
times are below or about equal to those of the TCP proxy,
which is intuitive, since the HTTP proxy can cache con-
tent. The pipelined case shows some improvements, but
the performance cannot match that of the TCP proxy due
to the reasons discussed in section 4.2..

3We measured TCP timeout durations of 10s and more.

1 i : i

@——e N0 proxy

m——m TCP proxy

107 oo Squid proxy

Squid proxy, increased persistency

mean of page loading time [s]

0 0.01 0.02 0.03 0.04 0.05
P

loss

Figure 11: Mean of page loading times, persistent
HTTP connections with pipelining

5. Conclusion

We investigated the connection behavior of the
Mozilla web browser and evaluated the performance of
TCP and HTTP proxies under typical web traffic in an
UMTS environment. Our studies show that proxies do
not increase system performance by default. Instead, the
proxy concept and the parameters of all involved devices
must be carefully chosen under consideration of all net-
work aspects. In the case of a good server connection,
HTTP performs best with activated persistent connec-
tions and pipelining and without any proxy. If the con-
nection towards the server is bad, the same HTTP con-
figuration in combination with a TCP proxy delivers best
results, whereas the Squid HTTP proxy does not perform
well due to the lack of pipelining support.

Acknowledgements

Michael Scharf is funded by the German Research
Foundation (DFG) through the Center of Excellence
(SFB) 627. The authors thank Jochen Zwick for his valu-
able work on the automation of the Mozilla web browser.

REFERENCES

[1] J. Border, M. Kojo, J. Griner, G. Montenegro
and Z. Shelby: “Performance Enhancing Proxies
Intended to Mitigate Link-Related Degradations”,
RFC 3135, June 2001.

[2] A. Bakre and B. R. Badrinath: “I-TCP: Indirect
TCP for Mobile Hosts”, in Proc. Proc. 15th Int’l.
Conf. on Distr. Comp. Sys., May 1995.

[3] R. Yavatkar and N. Bhagawat: “Improving End-
to-End-Performance of TCP over Mobile Internet-
works”, in Proc. IEEE Workshop on Mobile Com-
puting Systems and Applications, Dec. 1994.

[4] R. Chakravorty and I. Pratt; “Rajiv Chakravorty
and lan Pratt, WWW Performance over GPRS”, in
Proc. IEEE MWCN 2002, Sep. 2002, Stockholm,
Sweden.

[5] M. Meyer, J. Sachs and M. Holzke: “Performance
Evaluation of a TCP Proxy in WCDMA Net-
works”, IEEE Wireless Communications, Vol. 10,
Iss. 5, Oct. 2003.

1 i : i

@———ae NO proxy

=———a TCP proxy

104 ¢ Squid proxy

Squid proxy, increased persistency

median of page loading time [s]

0 0.01 0.02 0.03 0.04 0.05
P

loss

Figure 12: Median of page loading times, persis-
tent HTTP connections with pipelining

[6] H. Inamura, G. Montenegro, R. Ludwig, A. Gur-
tov and F. Khafizov: “TCP over second (2.5G)
and third (3G) generation wireless networks”,
RFC 3481, Feb. 2003.

[7]1 A. Mutter, M. C. Necker and S. Lick: “IP-Packet
Service Time Distributions in UMTS Radio Access
Networks”, in Proc. EUNICE 2004, Tampere, Fin-
land.

[8] M. Scharf, M. C. Necker and B. Gloss: “The Sensi-
tivity of TCP to Sudden Delay Variations in Mobile
Networks”, LNCS 3042, May 2004.

[9] H. Balakrishnan, S. Seshan und R. H. Katz: “Im-
proving Reliable Transport and Handoff Perfor-
mance in Cellular Wireless Networks”, Wireless
Networks 1(4), Feb. 1995.

[10] J. Schiiler, S. Gruhl, T. Schwabe and M. Schweigel:
“Performance Improvements for TCP in Mobile
Networks with high Packet Delay Variations”, in
Proc. Int. Teletraffic Congress (ITC-17), Sep. 2001.

[11] M. C. Chan and R. Ramjee: “TCP/IP Performance
over 3G Wireless Links with Rate and Delay Vari-
ation“, in Proc. ACM MobiCom 2002, Sep. 2002.

[12] K. Brown and S. Singh: “M-TCP: TCP for Mobile
Cellular Networks”: ACM SIGCOMM Computer
Communications Review, 27(5), Oct. 1997.

[13] S. Reiser: “Development and Implementation of an
Emulation Library”, Project Report, University of
Stuttgart, IKR, Sep. 2004.

[14] W. R. Stevens: “TCP/IP Illustrated, Volume 17,
Addison-Wesley, 1994,

[15] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach and T. Berners-Lee: “Hyper-
text Transfer Protocol - HTTP/1.1”, RFC 2616.

[16] http://www squi d- cache. or g, Sep. 2004.

[17] R. Chakravorty, J. Cartwright and I. Pratt: “Prac-
tical Experience With TCP over GPRS”, in Proc.
IEEE GLOBECOM, Nov. 2002.

[18] V. Paxson: “End-to-End Internet Packet Dynam-
ics”, Trans. on Networking, Vol. 7, No. 3, June
1999.

[19] http://ww internettrafficreport.
com Sep. 2004.

