Options for Conex marking in IPv6 packets
draft-krishnan-conex-ipv6-00

Abstract

Conex is a mechanism by which senders inform the network about the congestion encountered by packets earlier in the same flow. This document describes the requirements for conex markings in IPv6 datagrams and describes the various options for performing conex markings in IPv6.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 8, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Conventions used in this document 3
3. Requirements for marking IPv6 packets 3
4. Possible Solutions ... 3
 4.1. Hop-by-hop options 3
 4.2. Destination options 4
 4.3. Header bits ... 4
 4.4. Extension Headers 4
5. Acknowledgements .. 4
6. Security Considerations .. 4
7. IANA Considerations ... 5
8. Normative References ... 5
Authors’ Addresses ... 5
1. Introduction

Conex is a mechanism by which senders inform the network about the congestion encountered by packets earlier in the same flow. This document describes the requirements for conex markings in IPv6 datagrams and describes the various options for performing conex markings in IPv6.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Requirements for marking IPv6 packets

R-1: The marking mechanism needs to be visible to all conex-capable nodes on the path.

R-2: The mechanism needs to be able to traverse nodes that do not understand the markings. This is required to ensure that conex can be incrementally deployed over the Internet.

R-3: The presence of the marking mechanism should not significantly alter the processing of the packet. This is required to ensure that conex marked packets do not face any undue delays or drops due to a badly chosen mechanism.

R-4: The markings should be immutable once set by the sender. At the very least, any tampering should be detectable.

4. Possible Solutions

4.1. Hop-by-hop options

The base IPv6 standard [RFC2460] defines hop-by-hop options. These options are processed by every node on the path. Hence they meet R-1. The options have variable semantics based on the 3 MSB of the option code. The state of these bits controls the behavior of nodes to either ignore unknown options or drop packets containing them. It also defines the ICMPv6 error message sending behavior and the mutability of the options en-route. This means that it is possible for hop-by-hop options to satisfy R-2 and R-4. In most commercial router implementations the mere presence of hop-by-hop options result in the packet being punt to the Slow path instead of being accorded
regular forwarding behavior (Fast Path). This means that R-3 is not satisifed.

4.2. Destination options

The base IPv6 standard [RFC2460] defines the destination options. These options are processed only by the ultimate receiver of the packet (as specified in the Destination Address field) and not by nodes on the path. Hence they do not meet R-1. The options have the same variable semantics based on the 3 MSBs as the hop-by-hop option which means that they can satisfy R-2 and R-4. As intermediate nodes currently do not process destination options R-3 is easily satisifed.

4.3. Header bits

The IPv6 header has no free bits. The only bits in the IPv6 header that are not widely used are the flow label bits [RFC3697]. There are some initiatives to redefine the use of the flow label for other purposes (e.g. Load balancing, nonce). It may be possible (but highly unlikeley) to save a few bits from the flow label for alternate purposes to end up with a shorter flow label. The use of IPv6 header bits can satisfy all the requirements for conex markings but using valuable header bits for experimental purposes (such as conex) may not be acceptable.

4.4. Extension Headers

The base IPv6 standard [RFC2460] defines extension headers as an expansion mechanism to carry optional internet layer information. Extension headers, with the exception of the hop-by-hop options header, are not usually processed on intermediate nodes. This means that R-1 cannot be met. Unknown extension headers cause the packet to be dropped and hence such mechanism is not incrementally deployable. Hence R-3 is not met either.

5. Acknowledgements

The authors would like to thank Marcelo Bagnulo, Bob Briscoe, Ingemar Johansson, Joel Halpern and John Leslie for the discussions that led to this document.

6. Security Considerations

This document does not bring up any new security issues.
7. IANA Considerations

This document does not require any IANA action.

8. Normative References

Authors’ Addresses

Suresh Krishnan
Ericsson
8400 Blvd Decarie
Town of Mount Royal, Quebec
Canada
Email: suresh.krishnan@ericsson.com

Mirja Kuehlewind
IKR University of Stuttgart
Email: mirja.kuehlewind@ikr.uni-stuttgart.de

Carlos Ralli Ucendo
Telefonica
Email: ralli@tid.es