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Problem Statement

Scenario

[ SIP Proxy
SIP

« control flow and RELATED media flow
- VoIP: SIP and RTP
« strict fine-grained policies
- not -A OUTPUT -p UDP -j ALLOW
- more than allow/not allow connection from/to
« more than one border element (load-balancing, protection, multi-
homing,..)
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Problem Statement

Approach 1: Connection Tracking only

[ SIP Proxy

problems

- extensibility/maintainability:
new kernel modules for new or changed control protocols

- robustness/security risk:
parsing of complex protocols in the kernel

- no authorization/fine-grained policies
requires additional internal SIP-proxy/B2BUA
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Problem Statement

Apporach 2: Application Layer Gateways (ALG)

[ SIP Proxy

SIP

__———(ALG(SBC)

« SIP-ALG: Session Border Controller (SBC)
- Processing of signaling and media (all in user space)
- All RTP routed through ALG independent of IP-Routing
- SBC needs full application knowledge (RTP codecs, ...)
- packet filter in front of SBC: completely open to UDP? Conntrack?

- Institute of Communication Networks and Computer Engineering University of Stuttgart




Problem Statement

Approach 3: Firewall Control Protocol

irewall control [SIP Proxy ]
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« firewall control daemons
- running on firewall machines
- accepting only messages from authorized machines
- session stateful server (SIP B2BUA)
- extracts RTP-flow parameters from signaling messages
- authorizes calls
- signals pinholes to open/close

Institute of Communication Networks and Computer Engineering University of Stuttgart



Problem Statement

Approach 3: Firewall Control Protocol - prohibiting flows (IDS)

irewall control [SIP Proxy ]
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Firewall control daemon: how to control packet filter?

- calling command line tools

- using libraries (libiptc, nfnetlink)

w |ots of dependencies on filter implementation, libraries, formats, OS
w general APl makes sense

- w detailed requirements? first have a look at firewall control...
Institute of Communication Networks and Computer Engineering University of Stuttgart




Firewall Control Frameworks

Firewall/NAT Control protocol zoo
« |IETF MIDCOM Framework

- Implemetation: Simco
« IETF NSIS

- path-coupled signaling framework (QoS requests, NAT, firewall)

« H.248 MEGACO
- ETSI: Profile for controlling media relays (BGF)

- H.248.37: signal SBC to replace addresses for NAT traversal

w Focus on firewall control: MSimco, NSIS

- Institute of Communication Networks and Computer Engineering
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MIDCOM Framework (RFC 3303)

Firewall Control Frameworks

- abstract protocol semantics for NAT/FW control

- abstract protocol entities

MIDCOM

PDP

oIicg,

MIDCOM

SIP

RTP
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Firewall Control Frameworks

MIDCOM/SIMCO

« Implementation of Midcom:
simple middlebox control protocol (SIMCO), (RFC 4540)

« NAT + Packet filter signaling — our focus: packet filter
« enable (PER) and prohibit (PDR) pinholes (white list)
« Pinhole
- two "address tuples" (transport protocol, address, prefix, port, portrange)
- ports and address wildcarding
- inbound/outbound/bidirectional
w can be mapped on 5-Tuple with ranges

Problem: multiple packet filters at network edge

« must be handled by client, independent of packet filters
« 1st possibility: know routing

« 2nd possibility: open pinholes in every packet filter

- Institute of Communication Networks and Computer Engineering University of Stuttgart




Firewall Control Frameworks

IETF NSIS (next steps in signaling)
« Framework for path-coupled signaling
- idea: signal nodes on path independent of IP routing (e.g. for QoS)

- generic messaging layer (General Internet Signaling Transport)

Datagram/Connection Mode
TCP, UDP, IPSec

- NSIS Signaling Level Protocols (NSLP) on top of GIST
« NAT/Firewall Control
- NAT/Firewall control NSLP (draft-ietf-nsis-nslp-natfw-15.txt)
- Authorizationbased on tokens (draft-manner-nslp-auth-03.txt)
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Firewall Control Frameworks

Domain 1 Domain 2

NSIS Firewall Signaling:
« Pinhole description based on existing flow
- sub_ports: how many contiguous ports (0..1)
- Allow/Deny
- blocking traffic with EXT messages (for whole prefix, port wildcard)
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Requirements on an API

There are several reasons for changing packet filter rules dynamically
- firewall control protocols (our motivation)
- ALG implementations
- Intrusion detection systems

Often realized by calling iptables, but libraries available are very specific
(libiptc). Strong dependency on filter realization.

w Why not desighing a common (high-level, userspace) API?
w \We started based on requirements from a SIMCO-Prototype
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Requirements on an API

(Our) Requirements

« open/close pinholes

« pinhole: 5-Tuple (incl. subnets + port ranges)
- bidirectional: two pinholes

- independent of filter-implementation (and OS)

« transaction semantics

« no control of whole packet filter, only dedicated rule sets

(e.g. one chain)

- fast
- frequent rule changes (VolP)
- high packet rate

- Institute of Communication Networks and Computer Engineering
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Pinhole API for netfilter

Vision
_____________________ | Application/Daemon
"NSIS | PP
SIMCO |aTry | DS !
PH PH uniform interface
enter FeMOYETT (OS independent)
unpriv. user

translation plugin
according to
_OS/config/kernel capab.

s - - Va - ~ S
_ - - ~ -~

Have a look into the details..
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Pinhole API for netfilter

Interface

Example: C++ interface

ruleManager.request (MODIFY_ RULESET) ;
int ruleIDl = ruleManager.addRule (

"1.2.3.4", 24,

100, 200,

"2.3.4.5",24,

300, 400,

IPPROTO UDP, AF INET);
ruleManager—->commit () ;

ruleManager.request (MODIFY_ RULESET) ;
ruleManager.delRule (ruleID1);
int ruleID2 = ruleManager.addRule (
"5.6.7.8", 24,
100, 200,
"6.7.8.9",24,
300, 400,
IPPROTO_UDP, AF_1INET);
ruleManager->commit () ;

Institute of Communication Networks and Computer Engineering
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Pinhole API for netfilter

Frontend

keeps all rules/pinholes

- optimization possible (hook)
while stil being able to delete
rules per ID

- enables differential updates
- failure: last known good

commit rules as batch to
backend

- inintervals (with backoff-Alg)
- currently: complete rule set

- libiptc backend performance:
changing or rewriting rules takes
almost the same time

init add del commit
Transaction Manager -

! oo |

rule set management

last
current optimized known

Control

good

SIMCO Lite Client —

i

internal Interface (via Socket)
to Backend

- socket communication: reuse of SIMCO message definition + added

new control messages
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Pinhole API for netfilter

Backend

« processing of frontend requests

- translation of pinholes to netfilter rules
- notify frontend about status

- failure recovery, e.g. frontend crash

« only Translation module Il is
packetfilter-dependent

internal interface
from Frontend

¢

Unix Domain Socket
Adapter

!

i

Simco Lite Server

!

Translation |
SIMCO->Intern
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Translation |l

Intern—>Netfilter
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Pinhole API for netfilter

Backend

« works on predefined chain
 integrate this chain into your packet filter configuration
« configure the rest of packet filter as you like

Example configuration of a packet filter using phapi
iptables -N phapi #chain to be used by daemon

iptables —-A FORWARD -3j phapi
iptables -A FORWARD -3j DROP

#starting daemon
#syntax: phapi_backend -s <socket> —-u <socket_user> -c <chain_name>

[-t <target>]
phapi_backend -s /tmp/phapi -u koegel -c phapi

Institute of Communication Networks and Computer Engineering University of Stuttgart




Pinhole API for Netfilter

Performance

Measurements with libiptc backend (VolP Scenario)
- 20 ms packetizing time: 100 pps/call (bidir.), no bursts
- 8 pinholes per call: (asymmetric RTP + RTCP ) x 2

- "bad/unwanted traffic" - will be filtered, but
» also contributes to overall packet rate

» check against every rule (other packets match after half of the rules)

- entering changed pinhole set into netfilter chain
 in fixed time intervals (every ??100 ms)
» effort depends on amount of pinholes
 effort independent of number of changes
» at high packet rates
- P4 2,53 GHz

Institute of Communication Networks and Computer Engineering
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Pinhole API for Netfilter

Delay (in ms)
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Pinhole API for netfilter

Summary

Current stage

- preview version: http://www.ikr.uni-stuttgart.de/Content/firewall/

- C++ API
- backend based on libiptc

Open issues
- Cinterface
- rule optimizer?
- handling TCP direction
- Improving performance
- Nat support

- Institute of Communication Networks and Computer Engineering

How to map pinholes to neftfilter?
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Mapping to netfilter

TCP direction
« meaning of direction different than for UDP:

not direction of packet flow but direction of connection establishment
« One TCP-pinhole signaled

- source->destination (for every packet)

- destination -> source (RELATED, !--syn)

- if using conntrack — closing pinhole means removing conntrack entry
w makes APl implementation complicated and dependant on static configuration
- therefore: first go for simple !--syn

« Two pinholes signaled (bidirectional)
w two rules, direction of connection establishment does not matter

w more intelligence in the backend

- Institute of Communication Networks and Computer Engineering University of Stuttgart




Mapping to netfilter

Improving performance

Criteria
- faster rule changes
- faster filtering

Hash-based?
- exact flow match only (no ranges)

- thus: combination of hash and list

« pinhole without range: use hash
« pinhole with range: use list

« pinhole with small range: several hash-entries (what is small? 4, 10, 1007?)

- conntrack? ipset?

Institute of Communication Networks and Computer Engineering

University of Stuttgart



Mapping to netfilter

1. Conntrack
- pinholes in conntrack table (permanent/timeout?)

- already present in most configuration, implicit semantics
... --state ESTABLISH, RELATED -j ACCEPT

2. IPset
- currently no 5-tuple match, extension possible
- simple configuration, just like using chains
- fast: 10.000 entries are no problem

Idea for fast netfilter backend
- extension of backend - ipset for small pinholes, chains for ranges

- how to combine this with TCP-direction-problem?

» two 5-tuple ipsets + list

 first set for all pinholes, target: tcp !--syn

 rule filtering on TCP --syn

» second set with pinholes allowing SYN

« ...or extending the 5-tuple ipset with flag for --syn?

Institute of Communication Networks and Computer Engineering University of Stuttgart



Conclusion and Discussion

Conclusion

simple Pinhole API

- 5-tuple + ranges + direction sufficient for most firewall control tasks
- transaction semantics: defined state and less communication effort
current prototype implementation phapi

- daemon + socket communication: privilege separation

- uses netfilter chains: decent performance, could be better

Discussion

Additional requirements?

- rate limiting

- NAT support

Better performance by suitable mapping of pinholes to netfilter
- ipset for 5-tuples? conntrack?

- suitable for large scale setups?
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