. INSTITUT FUR
% Universitit Stuttgart KOMMUNIKATIONSNETZE

UND RECHNERSYSTEME
Prof. Dr.-Ing. Dr. h. ¢. mult. P. J. Kiihn

A userspace API for netfilter control

Netfilter Workshop 2007, Karlsruhe

Sebastian Kiesel, Jochen Kogel, Sebastian Meier, Christian Blankenhorn
Institute of Communication Networks and Computer Engineering
University of Stuttgart
{kiesel, koegel, smeier, blankenhorn}@ikr.uni-stuttgart.de

September 11, 2007

« Problem statement
- limitations of connection tracking
- alternatives
- Firewall Control Frameworks: Overview
w Requirements on a Pinhole API
e Pinhole API for netfilter
- Design considerations
- Implementation status
- Mapping of pinholes to netfilter
« Conclusion and Outlook

Institute of Communication Networks and Computer Engineering

University of Stuttgart

Problem Statement

Scenario

[SIP Proxy
SIP

« control flow and RELATED media flow
- VoIP: SIP and RTP
« strict fine-grained policies
- not -A OUTPUT -p UDP -j ALLOW
- more than allow/not allow connection from/to
« more than one border element (load-balancing, protection, multi-
homing,..)

Institute of Communication Networks and Computer Engineering University of Stuttgart

Problem Statement

Approach 1: Connection Tracking only

[SIP Proxy

problems

- extensibility/maintainability:
new kernel modules for new or changed control protocols

- robustness/security risk:
parsing of complex protocols in the kernel

- no authorization/fine-grained policies
requires additional internal SIP-proxy/B2BUA

Institute of Communication Networks and Computer Engineering University of Stuttgart

Problem Statement

Apporach 2: Application Layer Gateways (ALG)

[SIP Proxy

SIP

__———(ALG(SBC)

« SIP-ALG: Session Border Controller (SBC)
- Processing of signaling and media (all in user space)
- All RTP routed through ALG independent of IP-Routing
- SBC needs full application knowledge (RTP codecs, ...)
- packet filter in front of SBC: completely open to UDP? Conntrack?

- Institute of Communication Networks and Computer Engineering University of Stuttgart

Problem Statement

Approach 3: Firewall Control Protocol

irewall control [SIP Proxy]
=\ / @) SP
@f e RTP
— f*
SIP B2BUA

i

g _/

4

Kl
-

« firewall control daemons
- running on firewall machines
- accepting only messages from authorized machines
- session stateful server (SIP B2BUA)
- extracts RTP-flow parameters from signaling messages
- authorizes calls
- signals pinholes to open/close

Institute of Communication Networks and Computer Engineering University of Stuttgart

Problem Statement

Approach 3: Firewall Control Protocol - prohibiting flows (IDS)

irewall control [SIP Proxy]
@f RTP
\[sm B2BUA T
= 7

—
’
\[Ibs =

Firewall control daemon: how to control packet filter?

- calling command line tools

- using libraries (libiptc, nfnetlink)

w |ots of dependencies on filter implementation, libraries, formats, OS
w general APl makes sense

- w detailed requirements? first have a look at firewall control...
Institute of Communication Networks and Computer Engineering University of Stuttgart

Firewall Control Frameworks

Firewall/NAT Control protocol zoo
« |IETF MIDCOM Framework

- Implemetation: Simco
« IETF NSIS

- path-coupled signaling framework (QoS requests, NAT, firewall)

« H.248 MEGACO
- ETSI: Profile for controlling media relays (BGF)

- H.248.37: signal SBC to replace addresses for NAT traversal

w Focus on firewall control: MSimco, NSIS

- Institute of Communication Networks and Computer Engineering

University of Stuttgart

MIDCOM Framework (RFC 3303)

Firewall Control Frameworks

- abstract protocol semantics for NAT/FW control

- abstract protocol entities

MIDCOM

PDP

oIicg,

MIDCOM

SIP

RTP

Institute of Communication Networks and Computer Engineering

impl. 1%
specific I

a)

MIDCOM policy
protocol | protocol
interface | interface

packet
filter
("middlebox")

private domain public network (e.g., Internet)

University of Stuttgart

Firewall Control Frameworks

MIDCOM/SIMCO

« Implementation of Midcom:
simple middlebox control protocol (SIMCO), (RFC 4540)

« NAT + Packet filter signaling — our focus: packet filter
« enable (PER) and prohibit (PDR) pinholes (white list)
« Pinhole
- two "address tuples" (transport protocol, address, prefix, port, portrange)
- ports and address wildcarding
- inbound/outbound/bidirectional
w can be mapped on 5-Tuple with ranges

Problem: multiple packet filters at network edge

« must be handled by client, independent of packet filters
« 1st possibility: know routing

« 2nd possibility: open pinholes in every packet filter

- Institute of Communication Networks and Computer Engineering University of Stuttgart

Firewall Control Frameworks

IETF NSIS (next steps in signaling)
« Framework for path-coupled signaling
- idea: signal nodes on path independent of IP routing (e.g. for QoS)

- generic messaging layer (General Internet Signaling Transport)

Datagram/Connection Mode
TCP, UDP, IPSec

- NSIS Signaling Level Protocols (NSLP) on top of GIST
« NAT/Firewall Control
- NAT/Firewall control NSLP (draft-ietf-nsis-nslp-natfw-15.txt)
- Authorizationbased on tokens (draft-manner-nslp-auth-03.txt)

Institute of Communication Networks and Computer Engineering University of Stuttgart

Firewall Control Frameworks

Domain 1 Domain 2

NSIS Firewall Signaling:
« Pinhole description based on existing flow
- sub_ports: how many contiguous ports (0..1)
- Allow/Deny
- blocking traffic with EXT messages (for whole prefix, port wildcard)

Institute of Communication Networks and Computer Engineering University of Stuttgart

Requirements on an API

There are several reasons for changing packet filter rules dynamically
- firewall control protocols (our motivation)
- ALG implementations
- Intrusion detection systems

Often realized by calling iptables, but libraries available are very specific
(libiptc). Strong dependency on filter realization.

w Why not desighing a common (high-level, userspace) API?
w \We started based on requirements from a SIMCO-Prototype

Institute of Communication Networks and Computer Engineering University of Stuttgart

Requirements on an API

(Our) Requirements

« open/close pinholes

« pinhole: 5-Tuple (incl. subnets + port ranges)
- bidirectional: two pinholes

- independent of filter-implementation (and OS)

« transaction semantics

« no control of whole packet filter, only dedicated rule sets

(e.g. one chain)

- fast
- frequent rule changes (VolP)
- high packet rate

- Institute of Communication Networks and Computer Engineering

University of Stuttgart

Pinhole API for netfilter

Vision
_____________________ | Application/Daemon
"NSIS | PP
SIMCO |aTry | DS !
PH PH uniform interface
enter FeMOYETT (OS independent)
unpriv. user

translation plugin
according to
_OS/config/kernel capab.

s - - Va - ~ S
_ - - ~ -~

Have a look into the details..

Institute of Communication Networks and Computer Engineering University of Stuttgart

Pinhole API for netfilter

Interface

Example: C++ interface

ruleManager.request (MODIFY_ RULESET) ;
int ruleIDl = ruleManager.addRule (

"1.2.3.4", 24,

100, 200,

"2.3.4.5",24,

300, 400,

IPPROTO UDP, AF INET);
ruleManager—->commit () ;

ruleManager.request (MODIFY_ RULESET) ;
ruleManager.delRule (ruleID1);
int ruleID2 = ruleManager.addRule (
"5.6.7.8", 24,
100, 200,
"6.7.8.9",24,
300, 400,
IPPROTO_UDP, AF_1INET);
ruleManager->commit () ;

Institute of Communication Networks and Computer Engineering

University of Stuttgart

Pinhole API for netfilter

Frontend

keeps all rules/pinholes

- optimization possible (hook)
while stil being able to delete
rules per ID

- enables differential updates
- failure: last known good

commit rules as batch to
backend

- inintervals (with backoff-Alg)
- currently: complete rule set

- libiptc backend performance:
changing or rewriting rules takes
almost the same time

init add del commit
Transaction Manager -

! oo |

rule set management

last
current optimized known

Control

good

SIMCO Lite Client —

i

internal Interface (via Socket)
to Backend

- socket communication: reuse of SIMCO message definition + added

new control messages

Institute of Communication Networks and Computer Engineering

University of Stuttgart

Pinhole API for netfilter

Backend

« processing of frontend requests

- translation of pinholes to netfilter rules
- notify frontend about status

- failure recovery, e.g. frontend crash

« only Translation module Il is
packetfilter-dependent

internal interface
from Frontend

¢

Unix Domain Socket
Adapter

!

i

Simco Lite Server

!

Translation |
SIMCO->Intern

!

Translation |l

Intern—>Netfilter

_>
-—
_>
_> g
C
o
®)
_>

_ = < =

Institute of Communication Networks and Computer Engineering

—
-3

—
-]

University of Stuttgart

Pinhole API for netfilter

Backend

« works on predefined chain
 integrate this chain into your packet filter configuration
« configure the rest of packet filter as you like

Example configuration of a packet filter using phapi
iptables -N phapi #chain to be used by daemon

iptables —-A FORWARD -3j phapi
iptables -A FORWARD -3j DROP

#starting daemon
#syntax: phapi_backend -s <socket> —-u <socket_user> -c <chain_name>

[-t <target>]
phapi_backend -s /tmp/phapi -u koegel -c phapi

Institute of Communication Networks and Computer Engineering University of Stuttgart

Pinhole API for Netfilter

Performance

Measurements with libiptc backend (VolP Scenario)
- 20 ms packetizing time: 100 pps/call (bidir.), no bursts
- 8 pinholes per call: (asymmetric RTP + RTCP) x 2

- "bad/unwanted traffic" - will be filtered, but
» also contributes to overall packet rate

» check against every rule (other packets match after half of the rules)

- entering changed pinhole set into netfilter chain
 in fixed time intervals (every ??100 ms)
» effort depends on amount of pinholes
 effort independent of number of changes
» at high packet rates
- P4 2,53 GHz

Institute of Communication Networks and Computer Engineering

University of Stuttgart

Pinhole API for Netfilter

Delay (in ms)

50

Institute of Communication Networks and Computer Engineering

VolP-Traffic only
simultaneous calls
0 50 100 150 200 250 300 350 400

| | | | | | |
| | | | Rule-Entry delay ———
: Packet delay -------
| Packet Ioss --------

—————————— | T T

2000 2500 3000

Number of rules

100

80

60

40

20

Packet loss (in %)

University of Stuttgart

Pinhole API for netfilter

Summary

Current stage

- preview version: http://www.ikr.uni-stuttgart.de/Content/firewall/

- C++ API
- backend based on libiptc

Open issues
- Cinterface
- rule optimizer?
- handling TCP direction
- Improving performance
- Nat support

- Institute of Communication Networks and Computer Engineering

How to map pinholes to neftfilter?

University of Stuttgart

Mapping to netfilter

TCP direction
« meaning of direction different than for UDP:

not direction of packet flow but direction of connection establishment
« One TCP-pinhole signaled

- source->destination (for every packet)

- destination -> source (RELATED, !--syn)

- if using conntrack — closing pinhole means removing conntrack entry
w makes APl implementation complicated and dependant on static configuration
- therefore: first go for simple !--syn

« Two pinholes signaled (bidirectional)
w two rules, direction of connection establishment does not matter

w more intelligence in the backend

- Institute of Communication Networks and Computer Engineering University of Stuttgart

Mapping to netfilter

Improving performance

Criteria
- faster rule changes
- faster filtering

Hash-based?
- exact flow match only (no ranges)

- thus: combination of hash and list

« pinhole without range: use hash
« pinhole with range: use list

« pinhole with small range: several hash-entries (what is small? 4, 10, 1007?)

- conntrack? ipset?

Institute of Communication Networks and Computer Engineering

University of Stuttgart

Mapping to netfilter

1. Conntrack
- pinholes in conntrack table (permanent/timeout?)

- already present in most configuration, implicit semantics
... --state ESTABLISH, RELATED -j ACCEPT

2. IPset
- currently no 5-tuple match, extension possible
- simple configuration, just like using chains
- fast: 10.000 entries are no problem

Idea for fast netfilter backend
- extension of backend - ipset for small pinholes, chains for ranges

- how to combine this with TCP-direction-problem?

» two 5-tuple ipsets + list

 first set for all pinholes, target: tcp !--syn

 rule filtering on TCP --syn

» second set with pinholes allowing SYN

« ...or extending the 5-tuple ipset with flag for --syn?

Institute of Communication Networks and Computer Engineering University of Stuttgart

Conclusion and Discussion

Conclusion

simple Pinhole API

- 5-tuple + ranges + direction sufficient for most firewall control tasks
- transaction semantics: defined state and less communication effort
current prototype implementation phapi

- daemon + socket communication: privilege separation

- uses netfilter chains: decent performance, could be better

Discussion

Additional requirements?

- rate limiting

- NAT support

Better performance by suitable mapping of pinholes to netfilter
- ipset for 5-tuples? conntrack?

- suitable for large scale setups?

Institute of Communication Networks and Computer Engineering University of Stuttgart

