Konzepte und Komponenten für komplexe Strukturen aus lokalen Netzen

1 Einführung

2 Kommunikationsprotokolle in der Fertigungsautomatisierung

Medienzugang (linke Seite) erweitert wurde. Hier werden auf allen Schichten geeignete, von der ISO standardisierte, Protokolle verwendet.

Bild 1: Protokollschichtung bei MAP

Eine virtuelle Maschine ist in MMS als ein Object definiert, das seinerseits verschiedene weitere Objekte wie Speicherbereiche (Domains), Programme, Variablen, Semaphore oder Ereignisbedingungen enthält.

MMS bietet neun Klassen von Diensten an:

1) Umgebungs- und allgemeine Management-Dienste (Auf-, Abbau oder Abbruch von Kommunikationsbeziehungen zu einem Partner, sowie Aushandeln der unterstützten Dienste und Datentypen),
2) VMD-Unterstützungs-Dienste (Abfrage von Zuständen oder anderen Informationen einer VMD),
3) Domain-Management-Dienste (Transferieren von Programmen oder Daten zu einer VMD oder umgekehrt),
4) Programm-Management-Dienste (Erzeugen, Starten, Anhalten, Fortsetzen, Zurücksetzen, Beenden oder Löschen von Programmen die auch auf verschiedene Domains verteilt sein können),
5) Variablen-Zugriffs-Dienste (Erzeugen oder Löschen von Variablen, sowie Austausch von Variablenwerten oder von Informationen über Variable),
6) Semaphore-Management-Dienste (Regeln des konkurrierenden Zugriffs auf ein Objekt),
7) Operator-Kommunikations-Dienste (Operatoreingaben an einer Konsole oder Ausgaben auf einen Bildschirm),
8) Ereignis-Management-Dienste (Ereignismitteilungen, sowie Definieren, Ändern oder Löschen von Bedingungen, deren Eintreten bestimmte Ereignisse auslösen sollen),

Aufbauend auf den angebotenen Diensten kann jeder Anwender seine speziellen Anwenderprogramme implementieren, wobei die begleitenden Standards beachtet werden sollten, sobald sie zur Verfügung stehen.

Um nicht für unterschiedliche Implementierungen von MMS die Anwenderprogramme jedesmal anpassen zu müssen, ist es zusätzlich notwendig die Anwenderschnittstelle zu standardisieren, was zur Zeit unter dem Stichwort MMSI (MMS-Interface) gemacht wird.

Der Einsatz von MAP in realen Produktionsanlagen ist erst dann sinnvoll, wenn die standardisierte Anwenderschnittstelle und die begleitenden Standards für die verschiedenen Geräteklassen zur Verfügung stehen. Außerdem fehlt bisher ein leistungsfähiges, standardisiertes Netzmanagement, das es erlaubt Engpässe oder Fehler frühzeitig zu erkennen, zu vermeiden oder schnell zu lokalisieren und zu beheben. Zwischenzeitlich ist aber trotzdem eine Erprobung in Pilotanlagen möglich und notwendig, um Erfahrungen damit zu sammeln und um die sich noch entwickelnden Standards sinnvoll zu beeinflussen.

3 Anforderungen an Netze und daraus resultierende Konzepte

Die Implementierung aller Schichten des Basisreferenzmodells führt zu einem sehr komfortable, aber aufgrund seiner Komplexität auch zu einem recht langsamen Kommunikationssystem. MAP in seiner vollständigen Variante gemäß Bild 1 kommt deshalb vor allem auf den höheren Ebenen einer hierarchisch strukturierten Fabrik zum Einsatz. Hier fallen relativ selten, dann aber meist große, Datenpakete an, deren Transport kaum zeitkritisch ist.

und Speicherplatzbedarf auch nicht sinnvoll, MMS vollständig zu implementieren. Stattdessen kommen auch hier die Geräteklassen aus Kapitel 2 zum Einsatz. Neben Stationen im logischen Ring des Token-Passing-Bus-Protokolls sind hier auch passive Stationen erlaubt, die nie einen Token erhalten. Um von ihnen Informationen abfragen zu können, wird auf der Sicherungsschicht die Klasse 3 des zugehörigen verbindungslosen Protokolls verwendet, die neben dem unquittierten auch einen quittierten Dienst zuläßt. Für den quittierten Dienst muß beim Token-Passing-Bus-Protokoll die Immediate-Response-Option verwendet werden, was allerdings nur bei Stationen am selben Segment möglich ist.

<table>
<thead>
<tr>
<th>Mini-MAP-Profil</th>
<th>PROFIBUS-Profil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Control</td>
<td>Numeric Control</td>
</tr>
<tr>
<td>Robot Control</td>
<td>Robot Control</td>
</tr>
<tr>
<td>ISO Manufacturing Message Specification (MMS)</td>
<td>Fieldbus Message Specification (FMS)</td>
</tr>
<tr>
<td>...</td>
<td>Lower Layer Interface (LLI)</td>
</tr>
<tr>
<td>7b</td>
<td>...</td>
</tr>
<tr>
<td>7a</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>ISO Logical Link Control Type 2, Class 3</td>
<td>Fieldbus Data Link (FDL)</td>
</tr>
<tr>
<td>ISO Token Passing Bus with Immediate Response Option</td>
<td>Media Access Control (MAC)</td>
</tr>
<tr>
<td>Carrier Band</td>
<td>Physical Bus</td>
</tr>
</tbody>
</table>

Bild 2: Protokollschnittung bei Mini-MAP und PROFIBUS

4 Netzkoppeleinheiten als Komponenten zum Aufbau komplexer Strukturen
Ausgehend von einem MAP-Netz in einer Fabrik, sollen im folgenden sinnvolle Netzübergänge und die dazu notwendigen Komponenten beschrieben werden.

4.1 Segmentierung von homogenen lokalen Netzen (Beispiel: MAP)
Innerhalb eines MAP-Netzes kann, genauso wie bei anderen lokalen Netzen auch, eine Segmentierung sinnvoll oder notwendig sein. Wenn die Dämpfung aufgrund zu großer räumlicher Entfernungen zu stark wird, können Repeater eingesetzt werden, die Netzsegmente auf der physikalischen Schicht koppeln und deshalb im wesentlichen Verstärker darstellen. Auf den beiden Seiten eines Repeaters dürfen auch unterschiedliche Medien verwendet werden.

Sind aufgrund der Laufzeit oder der Netzauslastung keine Repeater mehr einsetzbar, so muß mit Hilfe von Bridges, die auf der Sicherungsschicht arbeiten, segmentiert werden. Solche Bridges können eine Filterfunktion wahrnehmen und dadurch den Internverkehr eines Segmentes vom anderen Segment fernhalten. Durch die getrennten Medienzugangsverfahren, die unter Umständen auch unterschiedlich sein dürfen, ist die gleichzeitige Übertragung von Internverkehr in beiden Segmenten möglich, was die Leistungsfähigkeit des Gesamtnetzes deutlich vergrößert. Die Lage einer Bridge sollte sinnvollerweise so gewählt werden, daß der Externverkehr beider Segmente minimal wird und dabei trotzdem beide Segmente ungefähr gleich stark ausgelastet werden.

Zur Kopplung sehr vieler LAN-Segmente sollten Router verwendet werden, da diese auf der Vermittlungsschicht arbeiten und eine echte Wegeseuche vornehmen können. Im Gegensatz zu den beiden anderen Netzkoppeleinheiten werden Router mit ihrer teilnetzspezifischen Adresse explizit adressiert, so daß sie nicht jedes Paket auf dem Netz empfangen und analysieren müssen. Der Austausch von Routing-Tabellen und deren Aktualisierung erfolgt über ein spezielles Schichten-Management-Protokoll. Voraussetzung für die Kopplung über Router ist allerdings die Existenz der Vermittlungsschicht, was bei lokalen Netzen, aufgrund ihrer Verteileigenschaft, durchaus nicht immer der Fall ist.

4.2 MAP-Gateways als Komponenten zur Migration
Nach der Einführung von MAP entsteht die Forderung, daß Stationen mit herkömmlichen, firmenspezifischen Protokollen mit den neuen Stationen kommunizieren können müssen. Da

Bild 3: Einfügen von MAP-Fertigungszeilen in eine firmenspezifische Umgebung

In Bild 4 wird beispielhaft ein MAP-Gateway zu einem speziellen firmenspezifischen Netz näher betrachtet, welches auf der Verarbeitungsschicht das firmenspezifische Protokoll SINEC AP 1.0 (Siemens NETzwerk Architektur für Automatisierung und Engineering, Automation Protocol, Version 1.0) enthält. SINEC AP 1.0 erfüllt zusätzlich zu den Verarbeitungsschichtaufgaben die benötigten Funktionen der Darstellungsschicht und der Kommunikationsteuerungsschicht.

[Bild 4: Netzkopplung über ein MAP-Gateway]

Der Prozessor des Kopplungsrechners muß parallel sowohl beide Protokollstacks oberhalb der Transportschicht als auch die Kopplungssoftware bearbeiten können. Wenn der Kopplungsrechner gleichzeitig auch eine normale Station ist (zum Beispiel ein Zellenrechner), welche von beiden Netzen aus angesprochen werden kann, so kommt die Bearbeitung der normalen Anwendersoftware noch hinzu.
Dienste, die in der Kopplungssoftware nicht umgesetzt werden können, weil es im anderen Netz kein Analogon gibt, bedeuten einen Funktionalitätsverlust durch die Netzkopplung. Bei Diensten ohne Quittung werden die lokalen Quittungen von der Kopplungsschicht sofort zurückgeschickt, damit belegte Speicherplätze schnell wieder freigegeben werden können. Eine solche abschnittweise Quittierung ist bei Diensten mit Quittung nur dann möglich, wenn die Quittungen lediglich die Ankunft des Dienstes anzeigen sollen. Werden in den Quittungen Parameter oder Daten vom Empfänger erwartet, so muß eine Ende-zu-Ende-Quittierung erfolgen. Dadurch werden die Zeiten bis zum Quittungsempfang relativ groß, was bei der Einstellung der Laufzeiten von Timern berücksichtigt werden muß. Im MAP-Gateway ist dafür kein großer Pufferspeicher mehr notwendig, da sich aufgrund von Flusskontrollen die Dienste bereits beim Sender stauen und nicht erst im MAP-Gateway, wenn in Netz 2 ein Engpaß auftritt.

4.3 Anbindung von feldbusähnlichen Architekturen

4.4 Anbindung an TOP und an Weitverkehrsnetze

Im Büro hat sich das Protokollprofil TOP (Technical and Office Protocols) durchgesetzt. MAP und TOP können über eine Bridge oder über einen Router gekoppelt werden, weil die Medienzugangsverfahren unterschiedlich sind. Damit ist ein Filetransfer über FTAM möglich, da FTAM bei Bedarf auch in MAP neben MMS auf der Verarbeitungsschicht erlaubt ist. Zur Einbeziehung räumlich entfernter Rechenzentren oder Unternehmensniederlassungen, sind Remote Bridges (Bridge — Metropolitan Area Network (MAN) — Bridge), Router oder Gateways zu Weitverkehrsnetzen der nationalen Postverwaltungen notwendig.
5 Netzmanagement und Diagnose

Zur Zeit werden Standards für das Netzmanagement erarbeitet, die unter anderem Managementdaten als abstrakte Objekte (Managed Objects, MOs) in einer verteilten Datenbank (Management Information Base, MIB) definieren und den Zugriff darauf über spezielle Protokolle regeln. Dabei wird davon ausgegangen, daß sich auf jeder Station im Netz ein Agent-Prozeß befindet der von einem Manager-Prozeß aus angesprochen werden kann.

6 Modellierung und Leistungsbewertung

7 Stand der Entwicklung und Ausblick

Literatur

Verfasser:
Dipl.-Ing. Martin Bosch
Universität Stuttgart
Institut für Nachrichtenvermittlung und Datenverarbeitung
Seidenstraße 36, D-7000 Stuttgart 1