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Abstract

An important performance aspect of modern switching systems and signalling networks is the
response time to user requests. The overall system consists of nodes communicating by exchanging
messages. In each node incoming messages pass a series of service phases with possibly differe
priorities. Therefore a node can approximately be modelled as an M/G/1 priority system with feed-
back. The mean transfer times of different messages are a useful measure to describe the system
behaviour.

In this paper, a generic model is presented including batch arrivals, random branches, and forks.
Furthermore different preemption and queueing disciplines can be defined. The model is evaluated
with regard to phase utilization and mean transfer time through a single phase or a chain of phases.
The analysis uses an efficient and easy to implement algorithm based on the method of moments.
Interesting effects occur if the system is saturated. In this case the offered load will become greater
than 1 and only higher priority phases are passed in finite transfer times.

1. Introduction

Modern telecommunication networks can be characterized as large and complex distr
systems. They consist of various nodes exchanging signalling information via a signalling
work. Within a node the information generally passes a protocol stack which might be im
mented as a couple of software processes running on a single processing unit. These pr
again interact by exchanging messages. In order to minimize the time to user requests, e
call setup delay, it is necessary to evaluate the performance of the network.

One approach to get the network performance is to investigate the network as a whole.
ever, the model then becomes rather complex. Exact analysis of this complex model is no
sible at all while on the other hand simulation often causes unacceptable run times.

If the network consists of loosely coupled nodes decomposition and aggregation techn
have evolved to be a promising way for performance modelling ([1], [19]). In this approach
information stream between nodes is supposed to approximately have the Markov pro
Each node is then represented by an M/G/1 queueing system which can be solved sep
The arrival rates to the subsystem can be obtained by a message flow analysis for the ne
After the subsystems have been evaluated aggregation of the subsystem delays yields t
response time to a user request introduced by the network. The processing of message
subsystem is expressed by so-called message chains composed of several phases with
different priorities and service times. So we have an M/G/1 priority system with feedbac
the model for a node.
- 1 -
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An introduction to the analysis of M/G/1 systems without priorities can be found in [1
Takagi shows in [18] how response time distributions for M/G/1 priority systems without fe
back can be obtained. Response time distributions for priority systems with feedback
been investigated among others by Enns ([5], [6]) and Fontana ([7], [8], [9], [10]). Howe
they had to make some restrictions which are not valid for the model needed here.

While analysis of an M/G/1 priority system with regard to transfer time distribution functi
is still a rather complex task the method of moments introduced by Cobham in [3] is an a
native approach. The goal here is to calculate only the first moment (i.e. the mean valu
response times. This method has been applied to feedback priority systems by Simon
and Paterok ([15], [16]). In this paper, the method of moments will be extended to models
different queueing and preemption strategies. Moreover the influence of saturation, i.
offered load greater than 1, on system behaviour will be considered (Section 4). The
model will first be described in Section 2. The analysis of the generic model by the meth
moments will be shown in Section 3. In Section 5 some results of an example case stud
be presented.

2. Model Description

In the following a generic M/G/1 model consisting of a single server with infinite queue
capacity will be presented. This abstract model covers the most important cases necess
modelling communication subsystems.

Jobs arriving to the system are served in several phases forming a message chain. The
stic arrival processes are Poissonian. Batch arrivals are also possible. Arrival rates and
sizes can be individually defined for each message chain. Within a chain message flow
influenced by random branch and fork elements (Fig. 1).

Figure 1: Example of a system with two message chains

If the server is busy on the arrival of a job the job is put into the queue. The sequence o
jobs in the queue is determined by the priority values of the jobs. On arrival or feedback
changes its priority according to the priority value associated with the subsequent p
Among jobs with the same priority the queueing discipline controls which job is to be serv
next. Considered queueing disciplines are first-come-first-serve (FCFS), last-come-first
(LCFS), and random order of service.
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The service times of the various phases are distributed according to GI distribution func
For non-preemptive systems the mean service times and the coefficients of variation are
cient to describe the stochastic service processes.

The preemption behaviour of the system is defined by the global preemption distance
[11]). A job arriving in phase A will interrupt a job currently served in phase B if the differen
of the priority values of A and B is greater than or equal to the preemption distance.
preemption strategy associated with the corresponding phase determines how an inte
job behaves. If the preemption strategy is “preemptive resume” service continues at the
where it has been interrupted when the job re-enters service. The strategy “preemptive r
defines that the work that has already been done on an interrupted job is lost. In this ca
service time on re-entry to the server may be resampled according to the service time dis
tion (“preemptive repeat with resampling”) or it may be the same as in the first service att
(“preemptive repeat without resampling”).

3. Analysis

In order to get the mean values for transfer and waiting times in a model derived from
generic model described in section 2 the method of moments is applied. This approac
three fundamental laws of traffic theory:

• Little’ law [14] expressing that the mean value of the number of customers in an a
trary system depends in a linear way on the arrival rateλ and the expectation value of the
sojourn time TS in the system:

(1)

• the PASTA theorem [20] which proclaims that a customer arriving in a Poisson str
sees the system in its average state

• the result from renewal theory [13] for the expectation value of the residual life time
of a customer whose service time  has known mean value and variance:

(2)

The basic principle of the method of moments is to tag a random customer and to follow
way through the system. For this customer the mean delay is composed of some partial
he suffers from different classes of jobs. In the case of a non-preemptive system without
back the delay of a tagged job until his service is finished arises from three class
customers:

• the customer currently served when the tagged job arrives

• customers with higher or equal priority already being in the queue upon the tagged
arrival

• customers arriving while the tagged job is in the queue and overtaking him becau
higher priority

The partial delays can be calculated by usage of the fundamental laws described a
Summarizing the partial delays for the tagged customer leads to a linear equation syste
the mean transfer times through the phases which can easily been solved.

N

N[ ]E λ TS[ ]E⋅=

TR
T

TR[ ]E
1
2
--- T[ ]E T[ ]Var

2 T[ ]E⋅
--------------------+⋅=
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For the simple M/G/1 queueing system with only one phase we have to solve a single equ

(3)

where is the mean waiting time, is the mean service time, is the mean queue leng
is the mean residual service time, is the coefficient of variation of the service time,

is the mean utilization of the system. Solving this yields Pollaczek-Khintchin
well-known formula for the mean waiting time:

(4)

In a system with feedback things become more difficult. If the tagged job re-enters the sy
in a feedback the PASTA theorem can not be applied because the feedback stream do
necessarily have the Markov property. In this case the re-entering customer does not s
system in its global mean state. Therefore the mean state at feedback must be sequ
derived from the mean state at arrival which is identical to the global mean state. In [16
[17] this is done by complex mathematical formulas while we used an efficient and ea
implement algorithm that directly imitates priority queueing within the system (see [2]). T
algorithm is iteratively applied to all phases within a chain. First it provides the calculatio
the delay equation for the current phase. Moreover the algorithm maintains the mean s
state at departure of the phase. This state at departure can then be interpreted as the
arrival when the algorithm is applied to the following phase.

For preemptive systems the decomposition into job categories has to be refined. Furthe
some auxiliary quantities have to be computed for each phase like the probability for not
interrupted or the expected residual service time. Those quantities have already been der
[4] and [16] for preemptive resume and preemptive repeat with resampling while for pree
tive repeat without resampling they can be found in [2].

4. Saturated Systems

The system becomes saturated if the total offered load is greater than 1. In this case the n
of customers entering the system within a time period is greater than the numb
customers served within . Therefore the number of jobs in the system increases s
stationarity is no longer given. The system gets instable.

Regarding a saturated priority system one can establish that in a certain range of loa
number of jobs waiting for service in higher priority phases still shows a stationary behav
while it increases to infinity in lower priority phases. In other words, lower priority phases
that share of utilization that has been left by higher priority phases. Therefore the outpu

 of a lower priority phase  is reduced by a factor  compared to the input rate

(5)

This “reduction factor” can be used to introduce the so-called “critical” priority and
distinguish three phase classes according to their behaviour at a certain load:

• Phases with a priority greater than the critical priority have a reduction factor of 1. T
means that there is no reduction of data flow in these phases. The mean values of
queue length and transfer time are finite for these phases.

w ρ tR⋅ Ω h⋅+ ρ h
2
--- 1 c2+( )⋅ λ w h⋅ ⋅+⋅= =

w h Ω tR
c

ρ λ h⋅=

w
1 c2+

2
-------------- ρ

1 ρ–
------------ h⋅ ⋅=

∆t
∆t

λout i, i xi λin i,

xi
λout i,

λin i,
------------=
- 4 -



on
rate is
e go

. no
o goes
a

hases
mes-

re is a

ritical
hase

hain
an

the
ion of

then
f satu-
ifica-

ystem
If we
mptive
alues
g
le.
• The reduction factor for phases with a priority value equal to the critical priority takes
values between 0 and 1. Customers are still served in these phases but the service
lower than the offered rate. The mean values of partial queue length and transfer tim
to infinity.

• Phases with a priority lower than the critical priority have a reduction factor of 0, i.e
jobs are served in those phases. Here the mean value of the partial queue length als
to infinity while transfer time is undefined. All phases following that phase within
chain have input rates of 0.

For systems with FCFS or random order queueing discipline it can be shown that all p
whose priorities are equal to the critical priority have the same reduction factor. Within a
sage chain the equation

(6)

holds where is the predecessor phase of . The factor is equal to unity unless the
branch or a fork at the transition from phase  to phase .

Now let be the total number of phases in the system and the number of phases with c
priority. Applying the previous results and considering the possibility of more than one p
with critical priority being part of the same chain one can state that

with , . (7)

In this formula denotes the number of preceding phases with critical priority in the c
containing phase including phase if its priority value is critical. With being the me
service time of phase  we then have the phase utilization

. (8)

Finally the sum of the utilization factors of all phases in the system must equal unity in
saturated case. So the definition equation for the reduction factor is a non-linear equat
the form

with , (9)

which can be solved by numerical approximation for higher degrees. Afterx has been calcu-
lated all flow rates and utilization factors can be computed. The transfer time analysis is
performed using the method of moments as described in Section 3. The only influence o
ration is now that merely phases with a finite transfer time according to the previous class
tion have to be considered.

5. Example

As an example the results for the system depicted in Fig. 2 will now be presented. The s
consists of three chains which are composed of phases with priority values 1, 2, and 3.
choose the global preemption distance to have a value greater than 2 we get a non-pree
system. All phases in the system have deterministic service times with mean v

and . The arrival rates are variable maintainin
a constant ratio . Batch arrivals are not considered in this examp

λin i, q λout j,⋅=

j i q
i j

n k

λout i, x
bi∼ 0 bi k≤ ≤ 1 i n≤ ≤

bi
i i h i

i

ρi λout i, hi⋅ ai x
bi⋅= =

n
x

ai x
bi⋅

i 1=

n

∑ 1= 0 ai 1≤ ≤ 0 bi k n≤ ≤ ≤

h1 h4 h5 h6 h7 1= = = = = h2 h3 5= =
λ1 λ2 λ3÷÷ 3 2÷ 4÷=
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Figure 2: System with three message chains

The diagrams for the chain utilizations are depicted in Fig. 3. One can recognize that the
zation of chain 1 containing phases with the least priority 1 is reduced first. Although pha
has a priority value greater than the critical priority at this point it suffers from the throttling
the preceding phases. On the other hand, utilization of chain 2 is not affected by the colla
chain 1. Utilization of this chain increases up to the load where 2 becomes the critical pri
In the following load range we have a non-linear degradation of chain utilization in chain 1
2. This is caused by the fact that both chains contain phases with the critical priority relat
the corresponding load range.

Figure 3: Chain utilizations
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Figure 4: Chain transfer times

When we look at the transfer times (Fig. 4) we find that especially the curve for the tran
time through chain 3 is interesting. This chain consists of a single phase with highest pri
The diagram shows that there are sharp bends at the points where lower priority phases
saturation. In the load range where 1 is the critical priority we even have a decreasing tra
time in chain 3. This is because the partial delay of a chain 3 job, which is caused by the
ual service times of phases 2 and 3, decreases when lower priority utilization goes down

6. Conclusions

When using decomposition and aggregation techniques for the performance evaluation o
munication networks problems are often reduced to the evaluation of M/G/1 priority sys
with feedback. A generic model for that kind of systems has been presented. The m
considers that messages are processed sequentially in phases with different properties.

The M/G/1 priority model with feedback can be evaluated by the method of moments. B
on a few fundamental laws this technique divides the total mean delay of a tagged job int
tial delays which can be calculated separately. Using an efficient algorithm the mean
analysis of transfer times can easily be implemented in a tool.

When load is increased priority systems show an interesting behaviour. Higher priority ph
still can have a finite transfer time while stationarity is no longer given for lower prio
phases. It has been shown in an example case study that this may even lead to a dec
transfer time for higher priority phases.
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