18. Bericht über verkehrstheoretische Arbeiten

Mehrstufige doppelt-gerichtete Koppelanordnungen der Vermittlungstechnik mit Intern- und Externverkehr

von

D. Bazlen

1973
The analytical investigations are concerned with the approximate calculation of the probability of loss as a function of the link system's structure and the different types of carried traffic. Structure and carried traffic are prescribed. The losses and therefrom the offered traffic are calculated. The basic idea for this approximate calculation is the method CIRB (Combined Inlet and Route Blocking) which was developed for unidirectional traffic. This method is suitably extended for various types of mixed internal and external traffic flowing simultaneously through the SCN. Hereby one assumes on the trunk groups with mixed internal and external traffic the special function for the probabilities of state which holds exactly for fully accessible groups.

In the following a brief review of the various chapters will be given.

Chapter II: Abbreviations and Definitions (pp 10-12)
The most important abbreviations and definitions used in the paper are given. Two types of offered traffic are distinguished:

FCT 1 (Pure Chance Traffic of Type 1):
The mean arrival rate per Unit Time is constant and independent of the state of occupancy of the system. The interarrival times and the holding times are negative exponentially distributed.

FCT 2 (Pure Chance Traffic of Type 2):
The mean arrival rate per Unit Time is proportional to the number of instantaneously free sources. The interarrival times per free source and the holding times are negative exponentially distributed.

Chapter III: Introduction (pp 13-18)
General remarks about the investigated switching arrays with internal and external traffic are outlined.

Chapter III: Basic Methods (pp 19-37)
In Section III.2 the capital ideas of the method CIRB are explained. In Section III.3 the probability distribution p(x) for fully accessible trunk groups with mixed internal and external traffic is explained for FCT 1. For the case of FCT 2 corresponding new formulas for p(x) are derived.
Chapter IV: Link Systems With Mixed Internal and External Traffic (pp 38-167)

In Section IV.2 the three types of traffic (internal, outgoing external and incoming external) are characterized. Section IV.3 gives the mathematical model for the internal as well as the incoming external traffic. Hereby it is assumed that the incoming traffics (internal and external) are connected to the considered SCN via further GSN arrays (e.g. as in Fig. 1). Losses caused by these selector stages are assumed to be negligibly small. According to the various structures of public as well as private exchanges 5 Operation Modes for link systems with mixed internal and external traffic have to be investigated analytically. A survey of these 5 Operation Modes is given in Section IV.4.

These Operation Modes are described in detail in Sections IV.5 to IV.8 and formulas for the probabilities of loss are derived. For each of the 3 traffic types (internal, outgoing external, incoming external) one special loss formula is derived. Each formula embraces three components which are calculated individually for PCT 1 or PCT 2 resp.:

1. Losses caused by "Inlet" Blocking:
 These losses are caused by blocking of the outlets of a multiple in the first stage of the link system.

2. Losses caused by Link Group Blocking:
 This Link Group Blocking occurs behind link stages with concentration if no idle link to the next following stage is accessible.

3. Losses caused by Trunk Group Blocking:
 Trunk Group Blocking occurs behind the last stage caused by the limited access to the considered trunk group of the link system.

For various examples diagrams are shown regarding the probabilities of loss as a function of the carried traffic. Hereby the results of the calculation are compared with artificial traffic tests to demonstrate the accuracy of this approximate calculation method.
5.6.2 Grundsätzliche Bemerkungen zur Definition des Angebots bei Systemen mit ZV 2 und Internverkehr

5.6.3 Die Wegesuchalgorithmen
5.6.3.1 Der Wegesuchalgorithmen 1
5.6.3.2 Der Wegesuchalgorithmen 2

5.6.4 Die Wahrscheinlichkeitsverteilung p(x) auf den n_e Leitungen des Leitungsbündels hinter der Stufe s des Linksys

5.6.5 Die Bündelblockierungen

5.6.6 Die Wahrscheinlichkeitsverteilung w(x) auf den k_1 Zwischenleitungen

5.6.7 Die Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- bzw. Zielkoppelvielfachs
5.6.7.1 Wegesuchalgorithmen 1
5.6.7.2 Wegesuchalgorithmen 2

5.6.8 Die Wahrscheinlichkeitsverteilung p_e(x) auf dem Zwischenleitungsbündel zwischen der Stufe v und der Stufe v+1

5.6.9 Die Zwischenblockierungen

5.7 Ergebnisse

IV.6 Betriebsart 2
6.1 Allgemeines
6.2 Die Beschreibung der Betriebsart 2
6.3 Die gegebenen Größen

IV.7 Betriebsart 3 und 4
7.1 Allgemeines
7.2 Die Beschreibung der Betriebsart 3 und 4

IV.8 Betriebsart 5
8.1 Allgemeines
8.2 Die Beschreibung der Betriebsart 5
8.3 Die gegebenen Größen

IV.9 Betriebsart 6
9.1 Allgemeines
9.2 Die Beschreibung der Betriebsart 6
9.3 Die gegebenen Größen

7.2.2 Betriebsart 4 (zwei Externrichtungen)
7.2.3 Linksleitungen mit drei Externrichtungen
7.2.4 Gegenüberstellung der Betriebsarten mit 1, 2 bzw. 3 Externrichtungen

7.3 Die gegebenen Größen

7.4 Die gesuchten charakteristischen Verkehrsgrößen

7.5 Zufallsverkehr 1. Art
7.5.1 Allgemeines
7.5.2 Die Wahrscheinlichkeitsverteilungen p_j(x) auf den Leitungsbündeln hinter der Stufe s des Linksys

7.6 Zufallsverkehr 2. Art
7.6.1 Allgemeines
7.6.2 Die Wahrscheinlichkeitsverteilungen p_j(x) auf den Leitungsbündeln hinter der Stufe s des Linksys

7.7 Ergebnisse

IV.8 Betriebsart 5
8.1 Allgemeines
8.2 Die Beschreibung der Betriebsart 5
8.3 Die gegebenen Größen
8.4 Die gesuchten charakteristischen Verkehrsgrößen

8.5 Zufallsverkehr 1. Art
8.5.1 Allgemeines
8.5.2 Die Wahrscheinlichkeitsverteilung p_j(x) auf den Leitungsbündeln

8.6 Zufallsverkehr 2. Art
8.6.1 Allgemeines
8.6.2 Die Wahrscheinlichkeitsverteilung $p_1(x)$ auf dem Leitungsbündel 1
8.7 Ergebnisse

V. Zusammenfassung

ANHANG

- 6 -

Schrifttumsverzeichnis

Einstufige Koppelanordnungen:

/1/ Rönblom, N.: Traffic loss of a circuit group consisting of both-way circuits, which is accessible for the internal and external traffic of a subscriber group.

/2/ Lotze, A.: Verluste und Gütemerkmale einstufiger Koppelungen.

Institut für Nachrichtenvermittlung und Datenverarbeitung der Universität Stuttgart, Monographie, 1966.

/6/ Herzog, U.: Adaptation of the MPJ loss formula to gradeings of various type. 4th report on studies in congestion theory.
Institut für Nachrichtenvermittlung und Datenverarbeitung der Universität Stuttgart, 1967.

/7/ Lotze, A.: History and development of grading theory.

Rehrsufige Koppelanordnungen:

/9/ Kharkevich, D.: An approximate method for calculating the number of junctions in a crossbar system exchange.
Elektrosvyaz' Nr. 1 (1959), S. 55 - 63.

/10/ Basharin, G.P.: Derivation of equations of state for two-stage telephone circuits with losses.
Elektrosvyaz' Nr. 1 (1960), S. 56 - 64.
Lotze, A.: Berechnung der Blockierungs- und Verlustwahrscheinlichkeit zweil- und mehrstufiger Linkssysteme für Mischwahl und Gruppenwahl nach dem Näherungsverfahren der "kombinierten Eingangs- und Abnehmerblockierung".

Lotze, A.: Optimum link systems.

Kümmerle, K.: An analysis of loss approximation for link systems.

Kümmerle, K.: Berechnungsverfahren für mehrstufige Koppelanordnungen mit konjugierter Durchschaltung - Systematik und Analyse.

Lörcher, W.: A) Exact calculation of the probability of loss for two-stage link systems with preselection and group selection.

Bazlen, D.: Call congestion in link systems with internal and external traffic.

Kämpe, G.: SIMSCRIPT.

Schönemeyer, H.: Das Fernsprech-Vermittlungssystem HE-60L.

Dietrich, G.; Willrett, H.: Struktur und Verkehrsleistung der Koppelanordnung im Fernsprech-Vermittlungssystem HE-60L.

Hagenhaus, L.; Beger, J.: Gruppierung der Teilnehmerwahlstufe im System ESK 10 000 E.
I. Abkürzungen und Definitionen

1. Strukturparameter

Stufe

\[\begin{array}{ccccccccccc}
1 & 2 & \ldots & s & k_1 & k_2 & \ldots & k_{r-1} & k_r & k_S \& n_{s1;} & \text{Leitungsbündel 1} \\
1 & 2 & \ldots & s & k_1 & k_2 & \ldots & k_{r-1} & k_r & k_S \& n_{sR} & \text{Leitungsbündel R}
\end{array} \]

\[\begin{array}{ccccccccccc}
1 & 2 & \ldots & s & k_1 & k_2 & \ldots & k_{r-1} & k_r & k_S \& n_{s1;} & \text{Leitungsbündel 1} \\
1 & 2 & \ldots & s & k_1 & k_2 & \ldots & k_{r-1} & k_r & k_S \& n_{sR} & \text{Leitungsbündel R}
\end{array} \]

\[s \quad \text{Anzahl der Stufen des Linksysteems.} \]
\[g \rho \quad \text{Anzahl der Koppelvielfache (KVfe) in Stufe } \rho; \rho = 1,2,\ldots,s. \]
\[l \rho \quad \text{Anzahl der Eingänge je KVf in Stufe } \rho; \rho = 1,2,\ldots,s. \]
\[k \rho \quad \text{Anzahl der Ausgänge je KVf in Stufe } \rho; \rho = 1,2,\ldots,s. \]
\[B \quad \text{Anzahl der Leitungsbündel (Abnehmerbündel) hinter der Stufe } s. \]
\[k_{s,j} \quad \text{Anzahl der Ausgänge je KVf in Stufe } s \text{ je Leitungsbündel } j; \]
\[j = 1,2,\ldots,B. \]
\[n_{s,j} \quad \text{Anzahl der Leitungen des Leitungsbündels } j; j = 1,2,\ldots,B. \]
\[g \rho k \rho \quad \text{Anzahl der Zwischenleitungen zwischen Stufe } \rho \text{ und } \rho+1. \]

2. Verkehrsparameter

\[\alpha \quad \text{Anrufrate je freie Quelle (zusätzlich indiziert entsprechend dem Verkehrstyp und/oder dem Leitungsbündel hinter der Stufe } s \text{ und/oder der Koppelstufe des Linksysteems).} \]
\[\alpha_0 \quad \text{Fiktive (erzeugende) Anrufrate (Indizierung wie oben).} \]
\[A \quad \text{Angebot in Erlang (Indizierung wie oben).} \]
\[A_0 \quad \text{Fiktives (erzeugendes) Angebot (Indizierung wie oben).} \]
\[h \quad \text{Mittlere Belegungsdauer. Hier ist } h = 1 \text{ als normierte Zeiteinheit.} \]
\[\xi = \frac{1}{h} \quad \text{Endrate.} \]
\[Y \quad \text{Belastung in Erlang (Indizierung wie oben).} \]
\[d s = \frac{Y}{Y} \quad \text{Verhältnis von Intern- zu Gesamtbelastung (Indizierung wie oben).} \]
\[b \quad \text{Verlustwahrscheinlichkeit (Indizierung wie oben).} \]
\[B \quad \text{Verlustwahrscheinlichkeit (Indizierung wie oben).} \]
m_j : Mittlere Prüfbarkeit (Erreichbarkeit) des Leitungsbündels \(j \); \(j = 1, 2, \ldots, R \) (für \(R = 1 \) ohne Index).

m_ju : Größte ganze Zahl \(\leq m_j \).

m_j0 : Kleinstes ganze Zahl \(\geq m_j \).

\(\eta_j \) : Verhältnis der Belastung des Leitungsbündels \(j \) zur Gesamtbelastung; \(j = 1, 2, \ldots, R \).

\[m_j \] : Abnehmerblockierung bzw. Bündelblockierung (zusätzlich indiziert mit dem entsprechenden Verkehrstyp).

m_j1, m_j2 : Mittlere Prüfbarkeit des Zwischenleitungsbündels zwischen Stufe 1 und Stufe 1+1 (\(\gamma = 2, 3, \ldots, s-1 \)).

\[m_{j1} \] : Zwischenblockierung in der Stufe \(\gamma \).

\(c \) : Mittlere (erwartungsgemäß) Anzahl von Rufen je Zeiteinheit (zusätzlich indiziert entsprechend der Art der Rufe (angebotene Rufe, Verlustrufe u. a. und/oder mit dem Verkehrstyp u. a.).

2. Zustandsgrößen

\(\{ x \} \) : Zustand, daß in einem Bündel \(x \) Leitungen belegt sind.

\(p_{j}(x) \) : Wahrscheinlichkeit, daß der Zustand \(\{ x \} \) im Leitungsbündel \(j \) existiert; \(j = 1, 2, \ldots, R \) (für \(R = 1 \) ohne Index).

\(w(x) \) : Wahrscheinlichkeit, daß der Zustand \(\{ x \} \) im Zwischenleitungsbündel eines Koppelvielfachs der Stufe 1 existiert.

\(\mu_{j}(x) \) : Durchlasswahrscheinlichkeit im Zustand \(\{ x \} \) des Leitungsbündels \(j \); \(j = 1, 2, \ldots, R \) (für \(R = 1 \) ohne Index).

\(\sigma_{j}(x) \) : Sperrwahrscheinlichkeit im Zustand \(\{ x \} \) des Leitungsbündels \(j \); \(j = 1, 2, \ldots, R \) (für \(R = 1 \) ohne Index).

Entsprechend \(p_{w}(x) \), \(\mu_{w}(x) \), \(\sigma_{w}(x) \): Größen beziehen sich auf das Zwischenleitungsbündel zwischen der Stufe \(\gamma \) und der Stufe \(\gamma+1 \).

4. Betriebsparameter

Zufallsverkehr 2. Art: Die mittlere Anrufrate je Zeiteinheit ist proportional der Zahl momentan freier Quellen. Die Anruflängen sind freie Quelle und die Belegungsdauern sind negativ exponentiell verteilt.
II. Einleitung

Linksysteme werden sowohl als Teilnehmerwahl-Koppelanordnung (Endwahl-Koppelanordnung) als auch als Richtungswahl-Koppelanordnung eingesetzt /26 - 30, 32 - 36, u.a./.

Teilnehmerwahl-Koppelanordnungen dienen einerseits der Konzentration des Verkehrs von in der Regel schwachbelasteten Teilnehmeranschlüsseleitungen auf die stärker belasteten Leitungsbündel der inneren Verbindungswege einer Vermittlungsstelle (abgehender Verkehr); andererseits dienen sie der Expansion des ankommenden Verkehrs auf die Teilnehmeranschlüsseleitungen. Dies bedeutet, daß Teilnehmerwahl-Koppelanordnungen doppelt-gerichteten Verkehr führen.

Bild 1 zeigt eine Anordnung aus Teilnehmerwahl-Koppelanordnung (TW) und Richtungswahl-Koppelanordnung (RW).

Zur Untersuchung solcher Vermittlungssysteme stehen im wesentlichen 3 Verfahren zur Verfügung:

1. Verkehrsremessung: Die Verkehrsleistung, d.h. die Verlustwahrscheinlichkeit als Funktion des Verkehrangebots, der Struktur und der Steuerung einer Vermittlungsanordnung, in unserem Fall einer mehrstufigen Koppelanordnung mit konjugierter Durchschaltung (Linksystem), wird im öffentlichen Fernsprechnetz mit Hilfe von Verkehrsremessungen bestimmt. Gemessen wird in der Hauptverkehrszeit, für die ein konstantes Verkehrangebot, d.h. ein stationärer Prozess bezüglich der einfallenden Anrufe, vorausgesetzt werden kann. Um eine genügend große statistische Aussagesicherheit zu erhalten, muß eine genügend große Zahl von Ereignissen (Verbindungswünschen) erfasst werden (≥ 100.000 Anrufe). Dieses Verfahren ist deshalb sehr zeitraubend und oft ungenau. Wegen signifikanter Schwankungen des Verkehrsangebots an verschiedenen Werktagen und ebenso wegen saisonaler Schwankungen kann eine hinreichend große Zahl von Anrufen (bei gleicher Anrufrate) oft überhaupt nicht registriert werden.

Deshalb wird versucht für größere und kom- plexere Strukturen Näherungsverfahren zu finden, die einfach auswertbar sind und für die Praxis ausreichend genaue Ergebnisse liefern. Diese Näherungsverfahren müssen dann mit Simulationsergebnissen verglichen werden, um die Genauigkeit des Rechenverfahrens und/ oder dessen Gültigkeitsgrenzen zu überprüfen.

Derartige approximative Rechenverfahren haben den Vorteil, daß sie einfach anwend- bar sind und meistens nur sehr kurze Rechen- zeiten auf einem Digitalrechner benötigen.

In dieser Arbeit werden nun Linksyste mit doppelt-gerichtetem Verkehr behandelt. Solche Linksyste führen also z.B. den ab- gehenden Verkehr von den unmittelbar an das betrachtete Linkssystem angeschlossenen Teilnehmern zu den Bündeln der inneren Verbin- dungsweg und auch den ankommenden Verkehr von diesen Bündeln zu den Teilnehmern. Diese Verkehre können in 3 Anteile aufgeteilt werden:

Ebenfalls in Kapitel III wird die Berechnung der Wahrscheinlichkeitsverteilung für vollkommen erreichbare Bündel mit gemischtem Intern- und Externverkehr und Zufallsverkehr 1. Art (ZV 1) entsprechend zu /1, 5, 8/ gezeigt und es werden neue Beziehungen für Zufallsverkehr 2. Art (ZV 2) hergeleitet.

In Kapitel IV wird das neue Näherrungsverfahren für mehrstufige Linksysteme mit gemischtem Intern- und Externverkehr hergeleitet. Hierbei wird gezeigt, daß im wesentlichen 5 verschiedene Betriebsarten bei solchen Linksystemen unterschieden werden können. Außerdem wird bei der Berechnung dieser Linksysteme unterschieden zwischen:

1) Angebotenem Zufallsverkehr 1. Art (ZV 1): Dieser Angebotstyp unterstellt eine konstante Anrufrate α solange noch mindestens eine Zubringerverbindung frei ist. Rechnerisch kann dieser Fall behandelt werden, wie ein Verkehrsangebot aus endlich vielen Verkehrsquellen, dessen Anrufrate durch die endlich große Zahl von belegten Verkehrsquellen nicht reduziert wird.

III. Grundlegende Verfahren

1. Allgemeines

Zur näherungsweisen Berechnung der Verlustwahrscheinlichkeit mehrstufiger Linksysteme mit einem Externverkehr (einfach- gerichteter Verkehr) wurden bereits zahlreiche Verfahren entwickelt /14, 16/.

Eines dieser Verfahren, das Verfahren der kombinierten Eingangs- und Abnehmerblockierung (CIHB) /11, 13/, ist besonders einfach zu handhaben und liefert im allgemeinen für die Praxis ausreichend genaue Ergebnisse /11, 16/. In Abschnitt 2 dieses Kapitels werden die wesentlichen Merkmale dieses Verfahrens CIHB nochmals kurz beschrieben.

In Abschnitt 3 wird auf die bereits in /1, 5, 8/ hergeleitete Wahr scheinlichkeitsverteilung für Bündel hinter einstufigen Kop pelanordnungen mit vollkommener Erreichbarkeit und gemischem Intern- und Externverkehr bei ZW 1 kurz eingegangen und neue Be ziehungen für die Berechnung dieser Wahrscheinlichkeitsver teilung bei ZW 2 hergeleitet.

2. Das Verfahren der kombinierten Eingangs- und Abnehmer- blockierung, CIHB /11, 13/

2.1 Das Prinzip

Diese Verlustwahrscheinlichkeit setzt sich zusammen aus:

2. Verlustwahrscheinlichkeit b_2, infolge von Zwischenblockierung $[m_{11}, \ldots, m_{18}]$. Sie kennzeichnet jenen Anteil des Verlustes, der dadurch entsteht, daß bei Einfall eines Rufes (in einem bestimmten Koppelviel fach der Stufe 1) freie Abnehmerleitungen im gewünschten Bündel j nicht erreichbar sind oder daß alle Abnehmerleitungen des Bündels j belegt sind.

In allgemeinen sind die Zwischenblockierungen $[m_{11}, \ldots, m_{18}]$ vernachlässigbar klein gegenüber der Eingangs- bzw. Abnehmerblockierung.

Deshalb wird im folgenden zunächst die Berechnung der Gesamtver lustwahrscheinlichkeit ohne Zwischenblockierungen gezeigt (Abschnitt 2.1.1). Anschließend wird in Abschnitt 2.1.2 die Gesamtverlustwahrscheinlichkeit bei Berücksichtigung der Zwischenblockierungen angegeben.

Die hierbei verwendeten Größen b_1, $[m_{11}, \ldots, m_{18}]$ werden in Abschnitt 2.2 für Zufallsverkehr 1. Art und in Abschnitt 2.3 für Zufallsverkehr 2. Art berechnet.

2.1.1 Die Gesamtverlustwahrscheinlichkeit B ohne Zwischenblockierungen

Die Verlustwahrscheinlichkeit b_1 infolge von Eingangsblockierung ist definiert als

$$ b_1 = \frac{c_{V1}}{c_A} \quad (III.1) $$

mit

- c_A: Anzahl der angebotenen Rufe je Zeiteinheit.
- c_{V1}: Anzahl der Rufe je Zeiteinheit, die infolge von Eingangsblockierung verloren gehen.
Für die Verlustwahrscheinlichkeit b_{z2} gilt analog zu Gl. (III.2):

$$
 b_{z2} = \frac{c_A - c_{V1}}{c_A} \cdot \left[m_{12} \right] = (1 - b_1) \left[m_{12} \right] \quad (III.4)
$$

mit

$$
 \left[m_{12} \right]: \text{Zwischenblockierung in der Stufe 2.}
$$

Damit gehen
\(\{c_A - (c_{V1} + (c_A - c_{V1}) \cdot m_{12})\} \) Rufe weder durch Eingangs- noch durch Zwischenblockierung verloren. Mit dieser Zahl von Rufen ergibt sich die Verlustwahrscheinlichkeit b_{sj} infolge von Abnehmerblockierung:

$$
 b_{sj} = \frac{\left[c_A - (c_{V1} + (c_A - c_{V1}) \cdot m_{12}) \right] \cdot \left[m_j \right]}{c_A} \quad (III.4)
$$

Mit Gl. (III.1) und (III.4) wird:

$$
 b_{sj} = \left[1 - (b_1 + b_{z2}) \right] \cdot \left[m_j \right] \quad (III.5)
$$

b_1, b_{z2} und b_{sj} schließen sich gegenseitig aus, damit gilt:

$$
 B = b_1 + b_{z2} + b_{sj} =
$$

$$
 = b_1 + (1 - b_1) \cdot \left[m_{12} \right] + \left[1 - (b_1 + (1 - b_1) \cdot m_{12}) \right] \cdot \left[m_j \right] \quad (III.6)
$$

oder umgeformt:

$$
 B = b_1 + (1 - b_1) \cdot \left[m_{12} \right] + (1 - b_1) \cdot \left[m_j \right] - (1 - b_1) \cdot \left[m_{12} \cdot \left[m_j \right] \right] =
$$

$$
 = b_1 + (1 - b_1) \cdot \left[1 - \left[m_{12} \right] \cdot \left[m_j \right] \right] \quad (III.6)
$$

Hierbei ist
\(\{1 - \left(1 - \left[m_{12} \right] \right) \left[m_j \right] \} \) gerade die Wahrscheinlichkeit, daß entweder Zwischenblockierung oder Abnehmerblockierung auftritt.

Allgemein gilt für s-stufige Linkssysteme:

$$
 B = b_1 + (1 - b_1) \cdot \left\{ \frac{s-1}{s} \prod_{j=2}^{s-1} (1 - \left[m_{1j} \right] - \left[m_j \right]) \right\} \quad (III.7)
$$
2.2 Zufallsverkehr 1. Art

2.2.1 Der Verlust b_1 infolge von Eingangsblockierung

Es gilt:

\[b_1 = w(k_1) \]
\[(III.8) \]

Hierbei ist allgemein $w(x)$ ($x = 0, 1, \ldots, k_1$) die Wahrscheinlichkeit, dass von den k_1 Ausgängen eines Koppelvielfachs der Stufe 1 x Leitungen belegt sind.

Für $w(x)$ wird eine Erlang-Verteilung wie im vollkommenen Bündel mit k_1 Leitungen angenommen, damit:

\[w(k_1) = E_{k_1}(A_0) \]

mit
\[Y_1 = A_0(1 - E_{k_1}(A_0)) \]
als vorgegebene Belastung.

$E_{k_1}(A_0)$ ist die Erlang'sche Verlustformel, es gilt:

\[E_{k_1}(A_0) = \frac{A_0}{k_1!} \sum_{i=0}^{k_1} \frac{A_0^i}{i!} \]
\[(III.9) \]

Das fiktive Angebot A_0 wird durch Iteration so bestimmt, dass mit der Verteilung des vollkommen erreichbaren Bündels die vorgegebene Belastung Y_1 mit vorgeschriebener Genauigkeit (z.B. 10^{-6}) erreicht wird.

2.2.2 Die Abnehmerblockierung $[m_j]$ (Bündelblockierung)

Bei der Berechnung von $[m_j]$ wird das ökosystem durch eine einstufige, unvollkommen erreichbare Koppelanordnung ersetzt, deren konstante Erreichbarkeit gleich der mittleren Prüfbarkeit m_j ist /9, 11, 13, 16/.

Es ergibt sich /11, 13, 16/:

\[m_j = \sum_{\gamma=1}^{s-1} (k_{\gamma} - Y_{\gamma}) \times s_j + \eta_j \times Y_1 \]
\[(III.10a) \]

mit

\[\gamma=1 \]
\[\sum_{\gamma=1}^{s-1} (k_{\gamma} - Y_{\gamma}) \leq s_{\gamma+1} \]
\[(k = 1, 2, \ldots, s-1) \]
\[(III.10b) \]
und

\[m_j \leq n_{s_j} \]

Damit wird:

\[[m_j] = \sum_{x=n_{s_j}}^{n_{s_j}} g_j(x) \times p_j(x) \]
\[(III.11) \]

mit

$p_j(x)$: Wahrscheinlichkeit, dass x von den n_{s_j} Leitungen des betrachteten Abnehmerbündels belegt sind.

$g_j(x)$: Sperrwahrscheinlichkeit der einstufigen "Ersatz"-Koppelanordnung im Zustand {x}.

Für $p_j(x)$ wird wieder - analog zu $w(x)$ - eine Erlang-Verteilung im vollkommenen Bündel gleicher Belastung Y_{s_j} angenommen; der Bechgang verläuft entsprechend zur Herleitung der Mehrfach-Verlustformel /2, 3, 7/. Es ist:

\[[m_j] = \frac{E_{n_{s_j}}(A_0)}{E_{n_{s_j}+m_j}(A_0)} \]
\[(III.12) \]

mit

\[Y_{s_j} = A_0(1 - E_{n_{s_j}}(A_0)) \]
als vorgegebener Belastung.

Anmerkung:

Da im allgemeinen die mittlere Prüfbarkeit m_j nach Gl. (III.9) nicht ganzzahlig ist, erhält man $[m_j]$ bzw. $g_j(x)$ durch lineare Interpolation zwischen den Werten für m_{ju} und m_{jo} (siehe Definition Kapitel II).

Es ist dann:

\[g_j(x) = \frac{X_{m_{ju}}}{n_{s_j}} (m_{jo} - m_j) + \frac{X_{m_{jo}}}{n_{s_j}} (m_j - m_{ju}) \]
\[(III.13) \]
und

\[[m_j] = (m_{j_0} - m_j) \sum_{x=m_j}^{n_{x_j}} \xi_j(x) p_j(x) + (m_j - m_{j_0}) \sum_{x=m_j}^{n_{x_j}} \xi_j(x) p_j(x) \]

oder umgeformt:

\[[m_j] = (m_{j_0} - m_j) \frac{E_n_{x_j} (A_0)}{E_{n_{x_j} - m_j} (A_0)} + (m_j - m_{j_0}) \frac{E_{n_{x_j}} (A_0)}{E_{n_{x_j} - m_j} (A_0)} \]

(III.14)

2.2.3 Die Zwischenblockierung \([m_{1y}]\)

Bei der Berechnung der Zwischenblockierung \([m_{1y}]\) wird der Teil des Linkssystems bis einschließlich der Stufe \(v\) durch eine einstufige, unvollkommen erreichbare Koppeleinstellung ersetzt, deren konstante Erreichbarkeit gleich der mittleren Leistungspuffer ist.

Für \(m_{1y}\) gilt entsprechend zu \(m_j\) nach Gl.(III.10):

\[m_{1y} = \left\{ \begin{array}{l}
\sum_{k=1}^{\nu} (k_y - y) \cdot k_y + y_1 \\
\nu - 1 \end{array} \right. \]

mit

\[\nu - 1 \]

und

\[n_{x_j} = k_y \nu \]

In Gl.(III.10) für \(m_j\) steht der Faktor \(y_1\). Dies ist der Anteil von \(y_1\), der in die betrachtete Richtung führt und der damit ebenfalls auf frei oder besetzt geprüft werden kann. Hier in Gl.(III.15) ist \(y_1 = 1\), da alle \(y_1\) im Mittel belegten Ausgänge eines Koppeleistücks der Stufe 1 zu dem betrachteten Zwischenleitungenbündel dient.

Für die Zwischenblockierung gilt:

\[[m_{1y}] = \sum_{x=m_{1y}}^{k_y \nu} \xi_j(x) p_j(x) = \frac{E_{k_y \nu} (A_0)}{E_{k_y \nu - m_{1y}} (A_0)} \]

(III.16)

mit

\[p_j(x) \]: Wahrscheinlichkeit, daß \(x\) von den \(k_y\) \(p_j\) Leitungen des betrachteten Zwischenleitungsbeudels zwischen Stufe \(v\) und Stufe \(v+1\) belegt sind.

\[\xi_j(x) \]: Sperrwahrscheinlichkeit der einstufigen "Einsatz"-Koppeleinstellung im Zustand \(\{x\}\).

Der Rechenvorgang verläuft entsprechend zu Abschnitt 2.2.2, wobei hier von der vorgegebenen Belastung der \(k_y\) \(p_j\) Zwischenleitungen ausgegangen wird.

2.3 Zufallsverkehr 2. Art

2.3.1 Der Verlust \(b_1\) infolge von Eingangsblockierung

entsprechend zur Verlustwahrscheinlichkeit eines einstufigen, vollkommen erreichbaren Bündels bei endlicher Zahl von Verkehrskanälen (Mischungen, aus der Stufe 1 werden nicht betrachtet):

\[b_1 = \frac{i_1 - k_1}{i_1 - y_1} w(k_1) \]

(III.17)

Für \(w(x)\) wird eine "Erlang-Bernoulli-Verteilung" angenommen.

Mit:

\[w(k_1) = \frac{i_1}{(k_1)^{1 \cdot \alpha_0}} \sum_{y=0}^{\nu} \frac{(i_1)^y}{(k_1)^y} \]

(III.18)

\(\alpha_0\) ist eine "fiktive" Anrufrate, sie wird iterativ so bestimmt, daß

\[y_1 = \sum_{x=1}^{k_1} x \cdot w(x) \]

(III.19)

als vorgegebene Belastung mit vorgeschriebener Genauigkeit erfüllt ist.
2.3.2 Die Abnehmerblockierung \([m_j]\) (Bündelblockierung)

\(m_j\) und \(C_j(x)\) werden entsprechend zu Abschnitt 2.2.2 berechnet.
Für \(p_j(x)\) wird bei endlicher Quellenzahl wieder eine "Erlang-
Bernoulli-Verteilung" angenommen. Hierbei wird eine Quellen-
zahl
\[
Q = 11^1_S1
\]
(Ill.20)
zugrunde gelegt. Damit erhält man entsprechend zur EQ-Pendel-
formel für Mischungen bei endlicher Quellenzahl /4/:

\[
[m_j] = \frac{E_{n_j}^{\alpha_0}(Q)}{E_{n_j-1}^{\alpha_0}(Q)}
\]

mit

\[
E_{n_j}^{\alpha_0}(Q) = \sum_{y=0}^{n_j} \binom{n_j}{y} \alpha_0^y
\]

\(\alpha_0\) wird wieder iterativ so bestimmt, daß sich die vorgegebene
Belastung \(Y_{sj}\) ergibt (vgl. Abschnitt 2.3.1).

Wie in Abschnitt 2.2.2 muß zwischen den Werten für \(m_{ju}\) und \(m_{j0}\)
linear interpoliert werden.

2.3.3 Die Zwischenblockierung \([m_{j'1}]\) (vgl. Abschnitt 2.2.3)

Es gilt Gl.(III.21), wobei

- \(m_j\) ersetzt wird durch \(m_{j'1}\),
- \(n_{sj}\) ersetzt wird durch \(k_{j'1}\) und
- \(y_{sj}\) ersetzt wird durch die Belastung auf den \(k_{j'1}\) Zwischen-
leitungen.

3. Die Wahrscheinlichkeitsverteilung \(p(x)\) für vollkommen er-
reichbare Bündel mit gemischtem Intern- und Externverkehr

3.1 Zufallsvorfälle 1. Art

In /5/, /6/ wird ausgehend vom eindimensionalen Zustandsraum die
Wahrscheinlichkeitsverteilung \(p(x)\) exakt hergeleitet. Diese Her-
leitung wird im folgenden kurz skizziert.

Bild 2: Ausschnitt aus dem eindimensionalen Zustandsraum.

Wegen des - für die interessierende Hauptverkehrszeit - stationär-
en Verkehrsausfalls sind alle Zustände \(0 \leq x \leq n\) "im stati-

tischen Gleichgewicht", d.h. der Erwartungswert der Ereignis-
se "Zustand \(x\) entsteht" ist gleich jenem für die Ereignisse
"Zustand \(x\) verschwindet".

Für die Berechnung der Wahrscheinlichkeiten \(p(x)\) wird außer
vom statistischen Gleichgewicht - auch noch von der Tatsache
der "Zustands-Symmetrie" Gebrauch gemacht; d.h. es werden, vom
Zustand \(x+2\) ausgehend, nur die Übergänge "nach unten" in die
Zustände \(x+1\) und \(x\) bzw. "von unten" aus den Zuständen \(x+1\)
und \(x\) nach \(x+2\) betrachtet.

Führt man die Funktion \(f(x)\) ein, wobei \(f(x)\) der Erwartungswert
des Internanteils im Zustand \(x\) ist, so ergibt sich /5/:

\[
\xi_1 \{ [1-f(x+2)] \cdot (x+2) dt \cdot p(x+2) + \xi_2 f(x+2) \cdot \frac{x+2}{2} dt \cdot p(x+2) = \}
\]

\[
= c_{Ae} dt \cdot p(x+1) + c_{A1} dt \cdot p(x)
\]

(IIT.22)
In Gleichung (III.22) gibt die linke Seite an mit welcher Wahr-
scheinlichkeit (in einem Zeitelement \(dt \)) der Zustand \(\{x+2\} \)
endet und in den Zustand \(\{x+1\} \) bzw. \(\{x\} \) übergeht. Die rechte
Seite gibt an mit welcher Wahr scheinlichkeit der Zustand \(\{x+2\} \)
aus dem Zustand \(\{x+1\} \) bzw. \(\{x\} \) entsteht.
Hierbei ist:
\[
\xi (1-f(x+2)) (x+2) dt : \text{Wahrscheinlichkeit, daß im Zustand } \{x+2\}
\text{ ein Externruf in der Zeit } dt \text{ endet, d.h. der Zustand } \{x+2\} \text{ geht in den Zustand } \{x+1\} \text{ über.}
\]
\[
\xi f(x+2)^{x+2} dt : \text{Wahrscheinlichkeit, daß im Zustand } \{x+2\}
\text{ ein Internruf in der Zeit } dt \text{ endet, d.h. der Zustand } \{x+2\} \text{ geht in den Zustand } \{x\} \text{ über.}
\]
\(c_{Ae} dt \): Wahrscheinlichkeit, daß ein Externruf in der Zeit \(dt \) einfällt.
\(c_{A1} dt \): Wahrscheinlichkeit, daß ein Internruf in der Zeit \(dt \) einfällt.

Wegen der vorausgesetzten Stationarität des Verkehrs sind alle
Wahrscheinlichkeiten \(p(x) \) zeitunabhängig \((p(x,t) = p(x)) \).
Wird Gl.(III.22) über eine konstante Beobachtungsduer \(T \) integriert, so wird das Integral \(\int_0^T dt = T \)
damit kann Gl.(III.22) durch \(T \) dividiert werden.

Wird weiter \(A_e = c_{Ae}/\xi \) und \(A_1 = c_{A1}/\xi \) eingeführt (Externe
bzw. Internangebot) so wird:
\[
(1-f(x+2))(x+2)\cdot p(x+2) + f(x+2)\cdot \frac{x+2}{2} \cdot p(x+2) =
(III.23)
= A_e \cdot p(x+1) + A_1 \cdot p(x)
\]

Intern- und Externverkehr zusammen sind voraussetzungsgemäß im
"statistischen Gleichgewicht". Es wird nun davon ausgegangen,
däß Extern- und Internverkehr, getrennt betrachtet, sich eben-
falls im "statistischen Gleichgewicht" befiinden (der Beweis
für die Exaktheit dieser Annahme kann entsprechend zu Abschnitt
3.2 geführt werden). Damit kann Gl.(III.23) in zwei Teile zer-
legt werden:
a) Statistisches Gleichgewicht für den Externverkehr:
\[
(1-f(x+2))(x+2)\cdot p(x+2) = A_e \cdot p(x+1)
(III.24)
\]
b) Statistisches Gleichgewicht für den Internverkehr:
\[
f(x+2)\cdot \frac{x+2}{2} \cdot p(x+2) = A_1 \cdot p(x)
(III.25)
\]

Wird Gl.(III.25) nach \(f(x+2) \) aufgelöst und in Gl.(III.24) einge-
setzt, so ergibt sich:
\[
p(x+2) = \frac{A_e}{x+2} \cdot p(x+1) + 2 \cdot \frac{A_1}{x+2} \cdot p(x)
(III.26)
\]

Weiter gilt die normierende Bedingung (Randbedingung):
\[
\sum_{x=0}^{n} p(x) = 1
(III.27)
\]

wobei \(n \) die Anzahl der Leitungen des betrachteten Bündels ist.
Aus Gl.(III.26) und (III.27) ergibt sich schließlich ein ge-
schlossener Ausdruck für \(p(x) \) /1, 5, 8/:
\[
p(x) = \sum_{r=0}^{n} \frac{A_r (x-2r)}{A_1 - A_2} \cdot \frac{(x-2r)}{r} \cdot
\sum_{j=0}^{r} \frac{J_r (j-2r)}{J_1 - J_2} \cdot I_r (j-2r)!
(III.28)
\]
\[\frac{x}{2}\text{ bedeutet "das Ganze von } \frac{x}{2} \text{" (abgerundet).}
1.2 Zufallsverkehr 2. Art

Bei ZV 2 wird der Anruferprozeß des einen Verkehrstyps von der Zahl der Leitungen des anderen Verkehrstyps beeinflußt. Eine exakte Berechnung von p(x) darf deshalb nicht ohne weiteres direkt vom eindimensionalen Zustandsraum wie bei ZV 1 ausgehen.

Im folgenden wird deshalb die Berechnung von p(x), ausgehend vom zweidimensionalen Zustandsraum durchgeführt und mit der Berechnung ausgehend vom eindimensionalen Zustandsraum verglichen.

3.2.1 Die Berechnung von p(x) ausgehend vom zweidimensionalen Zustandsraum

Die Intern- bzw. Externbelegungen werden getrennt voneinander betrachtet. Mit x_1 bzw. x_e wird die Zahl der Intern- bzw. Externbelegungen in Bündel gekennzeichnet (bei x_1 Internbelegungen sind $2x_1$ Leitungen intern belegt). Damit ergibt sich allgemein folgender Ausschnitt aus dem zweidimensionalen Zustandsraum.

In Bild 3 ist:

$\alpha_e(q-(2x_1+x_e))$: Interne Anruferate im Zustand $[2x_1, x_e]$. Im Zustand $[2x_1, x_e]$ sind $q-(2x_1+x_e)$ Quellen frei, jede mit einer internen Anruferate α_e.

$q-(2x_1+x_e)-1 \over q$: Wahrscheinlichkeit, dass der gerufene Teilnehmer frei ist. Bei Einfall eines Internrufes im Zustand $[2x_1, x_e]$ wird die $(2x_1+x_e+1)$-te Quelle belegt, damit sind $(q-(2x_1+x_e)-1)$ Quellen frei. Die Wahrscheinlichkeit, dass der gerufene Teilnehmer (einer von denselben q Teilnehmern (die auch die Quellen bilden)) frei ist, ist dann gerade $(q-(2x_1+x_e)-1)/q$.

Nur wenn sowohl ein Internruf eintritt, als auch der gerufene Teilnehmer frei ist, kann ein Übergang $[2x_1, x_e] \to [2x_1+2, x_e]$ stattfinden.

$\alpha_e(q-(2x_1+x_e))$: Externe Anruferate im Zustand $[2x_1, x_e]$.

$\xi(x_1+1)$: Interne Enderate, wenn $2x_1+2$ Leitungen durch Internrufe belegt sind. Damit existieren x_1+1 Internbelegungen im Bündel, jede mit einer Enderate ξ.

$\xi(x_e+1)$: Externe Enderate, wenn x_e+1 Externbelegungen im Bündel sind.

Damit wird die zweidimensionale Zustandsgleichung (vgl. Bild 3):

$p(2x_1, x_e) \cdot \{q \cdot (2x_1+x_e)-1 \over q \} \cdot q \cdot (2x_1+1+x_e)-1 \over q \} \cdot \alpha_e(q-(2x_1+x_e)) + \alpha_e(q-(2x_1+x_e))+\xi(x_1+1)+\xi(x_e+1) = p(2x_1-2, x_e) \cdot \alpha_e(q-(2x_1-2+x_e)) = p(2x_1-2, x_e) \cdot \alpha_e(q-(2x_1-2+x_e)) - q \cdot (2x_1-2+x_e)-1 \over q \} + p(2x_1, x_e-1) \cdot \alpha_e(q-(2x_1+x_e-1)) + p(2x_1+2, x_e) \cdot \xi(x_1+1) + p(2x_1, x_e+1) \cdot \xi(x_e+1) \}$

Bild 3: Ausschnitt aus dem zweidimensionalen Zustandsraum.
Zur Veranschaulichung dieser Zustandsgleichung kann man sich die Zustandswahrscheinlichkeiten \(p(2x_1, x_e) \) auf einem Gitter angeordnet denken, man erhält damit eine graphische Darstellung der Zustandsgleichung (Bild 4).

\[
\begin{align*}
p(2,0) &= p(0,0) \frac{\alpha}{\xi} \cdot q \cdot \frac{a-1}{q} \quad \text{(III.30)} \\
p(0,1) &= p(0,0) \frac{\alpha}{\xi} \cdot q \\
\end{align*}
\]

Der Zustand \(\{2,1\} \) kann sowohl durch Einfall eines Internruftes im Zustand \(\{0,1\} \) als auch durch Einfall eines Externruftes im Zustand \(\{2,0\} \) entstehen. D. h. die Berechnung von \(p(2,1) \) muß ausgehend von \(p(2,0) \) bzw. ausgehend von \(p(0,1) \) dasselbe Ergebnis liefern, nur dann ist der gewählte Lösungsansatz mit Hilfe der "Vollsymmetrie" nicht zu verwerfen.

\[
\begin{align*}
p(2,1) &= p(2,0) \frac{\alpha}{\xi} \cdot (q-2), \text{ daraus mit Gl. (III.30)}: \\
p(2,1) &= p(0,0) \frac{\alpha}{\xi} \cdot \frac{a(q-1)(q-2)}{q} \\
\end{align*}
\]

bzw.

\[
\begin{align*}
p(2,1) &= p(0,1) \frac{\alpha}{\xi} \cdot (q-1) \cdot \frac{q-2}{q}, \text{ daraus mit Gl. (III.31)}: \\
p(2,1) &= p(0,0) \frac{\alpha}{\xi} \cdot \frac{a(q-1)(q-2)}{q} \\
\end{align*}
\]

Die so berechneten Wahrscheinlichkeiten \(p(2,1) \) stimmen also überein.

Wird dieses Verfahren für weitere Zustände \(\{x_1, x_e\} \) fortgeführt, so lässt sich das Bildungsgesetz für die Zustandswahrscheinlichkeiten \(p(2x_1, x_e) \) erkennen. Man erhält folgende geschlossene Lösung, in der noch \(p(0,0) \) unbekannt ist (im folgenden wird auf die mittlere Belegungsdauer \(h = 1 \) normiert, damit wird \(\xi = 1/h = 1 \)):

\[
p(2x_1, x_e) = p(0,0) \left(\frac{\alpha}{\xi} \cdot \frac{q^1}{x_1! \cdot x_e!} \cdot \frac{(q-(2x_1+x_e))!}{q^{x_1}} \right) \\
\]

(III.33)

Außerdem gilt die Bedingung, dass die Summe aller Zustandswahrscheinlichkeiten \(p(2x_1, x_e) \) gleich eins ist:

\[
\sum_{x_1=0}^{n/2} \sum_{x_e=0}^{n-2x_1} p(2x_1, x_e) = 1 \\
\]

(III.34)
Mit Gl. (III. 34) kann die unbekannte Wahrscheinlichkeit \(p(0,0) \) in Gl. (III. 33) eliminiert werden, es ergibt sich:

\[
p(2x_1, x_\varepsilon) = \frac{\frac{\alpha_1}{x_1} \frac{\alpha_\varepsilon}{x_\varepsilon} \cdot q^1}{\frac{n-2x_1}{z_1} \frac{\alpha_1}{z_1} \frac{\alpha_\varepsilon}{z_\varepsilon} \cdot q^1} \frac{(q-(2x_1+x_\varepsilon)!)}{(q-x_1)!} q^x_1
\]

(III. 35)

Für die geschlossene Lösung nach Gl. (III. 35) muß noch geprüft werden, ob sie die allgemeine Zustandsgleichung nach Gl. (III. 29) bzw. ob sie alle möglichen Zustandsgleichungen gemäß Bild 4 befriedigt. Dann und nur dann stellt \(p(2x_1, x_\varepsilon) \) nach Gl. (III. 35) die allgemeine Lösung des Gleichungssystems nach Bild 4 dar. Dieser Beweis kann durch Einsetzen von Gl. (III. 35) in (III. 29) einfach geführt werden.

Mit Hilfe der zweidimensionalen Zustandswahrscheinlichkeit \(p(2x_1, x_\varepsilon) \) soll nun die eindimensionale Zustandswahrscheinlichkeit \(p(x) \) berechnet werden. Es ist:

\[
x = 2x_1 + x_\varepsilon \]

(III. 36)

Ausgehend von Gl. (III. 33) mit \(p(0,0) = p(0) \) ergibt sich:

\[
p(x) = \sum_{x_1=0}^{\lfloor x \rfloor} p(2x_1, x-2x_1) = p(0) \sum_{x_1=0}^{\lfloor x \rfloor} \frac{\alpha_1}{x_1} \frac{\alpha_\varepsilon}{x_\varepsilon} \frac{x_1}{x_1!} \frac{x-2x_1}{(x-2x_1)!} \frac{q^1}{(q-x)!} q^x_1
\]

(III. 37)

\[
p(x) = p(0) \frac{q^1}{(q-x)!} \sum_{x_1=0}^{\lfloor x \rfloor} \frac{\alpha_1}{x_1} \frac{\alpha_\varepsilon}{x_\varepsilon} \frac{x_1}{x_1!} \frac{x-2x_1}{(x-2x_1)!} \frac{q^x_1}{q^x_1}
\]

(III. 37)

3.2.2 Die Berechnung von \(p(x) \) ausgehend von eindimensionalen Zustandsräumen

Im folgenden wird gezeigt, daß sich dieselbe exakte Lösung auch ergibt aus einer Abbildung des zweidimensionalen auf einen eindimensionalen Zustandsraum. Der Ansatz der eindimensionalen Zustandsgleichung entsprechend zu Gl. (III. 23) (bei ZV 1) ergibt (mit \(\epsilon = 1 \)):

\[
\{1-f(x+2)\}\cdot(x+2)\cdot p(x+2) + f(x+2)\cdot \frac{x+2}{2} \cdot p(x+2) = \frac{\alpha_1}{q} (q-x-1) \cdot p(x+1) + \frac{\alpha_\varepsilon}{q} (q-x) \cdot p(x) \cdot \frac{q-x-1}{q}
\]

(III. 38)

hierbei ist:

- \(\alpha_1 (q-x-1) \): Externe Anrufrate im Zustand \(\{x+1\} \)
- \(\alpha_\varepsilon (q-x) \): Interne Anrufrate im Zustand \(\{x\} \)
- \(\frac{q-x-1}{q} \): Wahrscheinlichkeit, daß der gerufene Teilnehmer (einer aus q) bei \((x+1) \) belegten Quellen frei ist.

Durch getrenntes Aufstellen des statistischen Gleichgewichts für Intern- bzw. Externverkehr kann entsprechend zu Abschnitt 3.2.1 \(f(x) \) eliminiert werden, damit ergibt sich:

\[
p(x+2) = \frac{\alpha_1}{x+2} \cdot p(x+1) + \frac{\alpha_\varepsilon}{x+2} \cdot p(x) \cdot \frac{q-x-1}{q}
\]

(III. 39)

Durch Berechnung von \(p(1) \), \(p(2) \) usw. läßt sich das Bildungsgesetz von \(p(x) \) erkennen, es ergibt sich wiederum Gl. (III. 37) (für die Summation wird entsprechend zu Gl. (III. 37) die Größe \(x_1 \) eingeführt):

\[
p(x) = p(0) \frac{q}{(q-x)!} \sum_{x_1=0}^{\lfloor x \rfloor} \frac{\alpha_1}{x_1} \frac{\alpha_\varepsilon}{x_\varepsilon} \frac{x_1}{x_1!} \frac{x-2x_1}{(x-2x_1)!} \frac{1}{q^x_1}
\]

(III. 37)
Mit der Bedingung \(\sum_{x=0}^{\infty} p(x) = 1 \) ergibt sich aus Gl. (III.37):

\[
p(x) = \frac{q^x}{(q-x)!} \sum_{x_1=0}^{\infty} \frac{\alpha_1 x_1^{x-x_1} \alpha_2 x_1^{x-2x_1}}{x_1! (x-2x_1)!} \frac{4}{q^{x_1}}
\]

\[
(III.40)
\]

\[
\sum_{r=0}^{n} \frac{q^r}{(q-r)!} \sum_{x_1=0}^{\infty} \frac{\alpha_1 x_1^{r-2x_1} \alpha_2 x_1^{r-2x_1}}{x_1! (r-2x_1)!} \frac{1}{q^{x_1}}
\]

Damit ist der Beweis erbracht, daß für die Berechnung von \(p(x) \) für ZV 2 ebenfalls von der eindimensionalen Zustandsgleichung ausgegangen werden darf (Gl. (III.39)).

IV. Linkssysteme mit gemischem Intern- und Externverkehr

1. Übersicht

Bei doppelt-gerichteten Linkssystemen mit gemischem Intern- und Externverkehr können 3 Verkehrstypen unterschieden werden:

1. Internverkehr
2. Abgehender Externverkehr
3. Ankommender Externverkehr.

Diese 3 Verkehrstypen werden in Abschnitt 2 dieses Kapitels näher beschrieben.

In Abschnitt 3 werden die Annahmen diskutiert, die bezüglich des Internverkehrs und des ankommenden Externverkehrs gemacht werden.

Die \(k_{\text{g}} \) "rechtseitigen" Leitungen (siehe Bild 5) der letzten (s-ten) Stufe des betrachteten Linkssystems können entweder als ein Leitungsbündel betrieben werden oder sie können in 2 oder mehr Bündel für abgehende und ankommende Verkehre (Intern bzw. extern) aufgeteilt werden. Hier können 5 wesentliche Betriebsarten unterschieden werden.

Ein kurzer Überblick über diese 5 Betriebsarten mit den wesentlichen Strukturmerkmalen wird in Abschnitt 4 gegeben.

In den Abschnitten 5, 6, 7 und 8 werden nacheinander diese 5 Betriebsarten ausführlich beschrieben und es werden jeweils die Verlustwahrscheinlichkeiten und andere charakteristische Verkehrsrößen berechnet.

Am Ende der Abschnitte 5, 6, 7 und 8 werden jeweils Rechenresultate verglichen mit Simulationsergebnissen. Um diese Vergleiche durchführen zu können, wurden für die 5 Betriebsarten umfangreiche Simulationsprogramme erstellt.
2. Die Verkehrstypen

Bild 5: Die 3 Verkehrstypen eines Linksystems mit Internverkehr.

Es werden 3 Verkehrstypen unterschieden:

- "ig": die Verkehrsgrößen des intern abgehenden Verkehrs,
- "ik": die Verkehrsgrößen des intern ankommenden Verkehrs.

Zur genaueren Beschreibung des Internverkehrs ist es zweckmäßig denselben zu unterteilen:

(3a) Koppelvielfachinterner Verkehr: Dies ist jener Teil des Internverkehrs, bei dem Zielkoppelvielfach gleich Ursprungs koppelvielfach ist (vgl. Bild 5). Dieser Verkehr wird mit einem Index "k" gekennzeichnet. Ferner kennzeichnet der Index:
- "kg": die Verkehrsgrößen des koppelvielfachinternen abgehenden Verkehrs,
- "kk": die Verkehrsgrößen des koppelvielfachinternen ankommenden Verkehrs.

(3b) Systeminterner Verkehr: Darunter versteht man jenen Teil des Internverkehrs, bei dem Zielkoppelvielfach ungleich Ursprungs koppelvielfach ist (vgl. Bild 5). Dieser Verkehr wird mit einem Index "s" gekennzeichnet. Hierbei kennzeichnet der Index:
- "sg": die Verkehrsgrößen des systeminternen abgehenden Verkehrs,
- "sk": die Verkehrsgrößen des systeminternen ankommenden Verkehrs.
Der Übersichtlichkeit halber wird eine weitere, für die Berechnung der Zwischenblockierung im allgemeinen notwendige, Unterteilung des Internverkehrs erst später, direkt bei der Beschreibung des Rechengefanges bei Berücksichtigung der Zwischenblockierung, eingeführt (vgl. Abschnitt 5.4.1.2).

3. Annahmen

3.1 Annahmen für den Internverkehr

Der abgehende und ankommende Teil einer Internverbindung innerhalb der betrachteten Teilnehmerwahl-Koppelanordnung (TW) werden (in der Regel) zwischen abgehend belegter Leitung und der ankommend belegten Leitung hinter der Stufe s über eine zusätzliche ein- oder mehrstufige Koppelanordnung miteinander verbunden (vgl. Bild 6: RW-Koppelanordnung). Hierbei wird angenommen:

1. Die Durchschaltung über diese zusätzliche Richtungswahl-Koppelanordnung (RW) erfolge praktisch verlustlos,
2. Zeitverzögerungen im Verbindungsaufbau, die durch diese zusätzliche Koppelanordnung verursacht werden, werden vernachlässigt. D.h. es wird angenommen, daß der abgehende und ankommende Teil der Internverbindung gleichzeitig hergestellt werden.

Zu Annahme 1 (Bild 6):

Bei diesem System nach Bild 6 ist die in der Annahme 1 betrachtete zusätzliche Koppelanordnung die Richtungswahl-Koppelanordnung (RW).

Es wird vorausgesetzt, daß ankommende Rufes konfiguriert über die RW- und die TW-Koppelanordnung durchgeschaltet werden, d.h. konfigurierte Durchschaltung vom "linksseitigen" Eingang der RW-Koppelanordnung bis zum "linksseitigen" Zielkoppelvielfach der TW-Koppelanordnung.

Es wird weiter angenommen, daß die RW-Koppelanordnung eine vernachlässigbar kleine "innere Blockierung" besitzt. Dann darf vorausgesetzt werden, daß alle freien Leitungen von der RW-Koppelanordnung zur TW-Koppelanordnung (Leitungsbündel 2 in Bild 6) durch den Markierer bei seinem Durchschalteversuch benutzbare sind.

(Dies bedeutet im Beispiel nach Bild 6:
- abgehender Internverkehr: "Punkt-Bündel-Markierung" vom Ursprungskoppelvielfach ("linke Seite" der TW-Koppelanordnung) zum Leitungsbündel 1,
- ankommender Internverkehr: "Punkt-Bündel-Markierung" vom Zielkoppelvielfach ("linke Seite" der TW-Koppelanordnung) zum Leitungsbündel 2.)
Zu Annahme 2:

In einem System nach Bild 6 erfolgt die Durchschaltung einer Internverbindung z.B. in 3 Schritten:

a) Konjugierte Durchschaltung des rufenden Teilnehmers über die TW-Koppelanordnung zu einem freien Verbindungssatz und einem freien Register.
b) Aufnahme und Auswertung der Wählzeichen im Register.
c) Nach der Wahl der gesamten Rufnummer wird der gerufene Teilnehmer markiert. Es erfolgt eine konjugierte Durchschaltung vom Verbindungssatz über die HW-Koppelanordnung und die TW-Koppelanordnung zum gerufenen Teilnehmer.

Wird näherungsweise eine konstante Zeit T für die Wahl und die Auswertung der Rufnummer angenommen, so ist die Durchschaltung des ankommenenden Teils der Internverbindung um die Zeit T verzögert gegenüber der Durchschaltung des abgehenden Teils.

Für die Wahl- und Auswartezeit können 10% bis 20% der mittleren Belegungsdauer eines Gesprächs angenommen werden.

Zur Untersuchung dieser konstanten Verzögerungszeit T wurde in /1B/ ein zeittreues Simulationsprogramm erstellt, mit dem Strukturen nach Bild 6 nachgebildet werden können. Die Untersuchungen ergaben, daß sich durch die zusätzliche konstante Zeit T die Belastung der TW-Koppelanordnung bei gleicher Anrufrate entsprechend erhöht; die Verlustwahrscheinlichkeit hat aber denselben Wert, wie wenn sie bei dieser (höheren) Belastung, jedoch ohne Zeitverzögerung, ermittelt worden wäre. Wird also bei der Berechnung solcher Linkssysteme von der Belastung des Systems ausgegangen, so kann die Zeitverzögerung zwischen der Herstellung des abgehenden und ankommenenden Teils einer Internverbindung vernachlässigt werden.

3.2 Annahmen für den ankommenenden Externverkehr

1. Der ankommende Externverkehr wird von den Verkehrsquellen fremder Linkssysteme erzeugt, d.h. von anderen Teilnehmergruppen derselben Vermittlungsstelle oder von Teilnehmergruppen fremder Vermittlungsstellen. Das Ziel dieses Verkehrs sind die Teilnehmer, d.h. 'linksseitigen' Eingänge (Bild 6) der Koppelvielfach der Stufe 1, des betrachteten Linkssystems.

4. Überblick über die 5 Betriebsarten

In den folgenden Abschnitten 5, 6, 7 und 8 werden nacheinander die 5 Betriebsarten ausführlich behandelt. Dieser Abschnitt soll eine kurze Zusammenfassung dieser Betriebsarten bezüglich ihrer wesentlichen Merkmale geben.

Betriebsart 1 (vgl. Abschnitt 5)

Bild 7: Linkssystem mit Betriebsart 1.
Bei der Betriebsart 1 werden die "rechtssseitigen" Leitungen der letzten Stufe des Linksystems als ein Leitungsbündel betrieben (Bild 7). Auf diesem einen doppelt-gerichteten Leitungsbündel wird sowohl abgehender und ankommender Internverkehr als auch abgehender und ankommender Externverkehr geführt.

Betriebsart 2 (vgl. Abschnitt 6)

<table>
<thead>
<tr>
<th>Stufe</th>
<th>1</th>
<th>2</th>
<th>s</th>
<th>2 Leitungsbündel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bild 8: Linksystem mit Betriebsart 2.

Bei Betriebsart 2 sind die "rechtssseitigen" Leitungen der letzten Stufe des Linksystems in zwei einfach-gerichtete Leitungsbündel aufgeteilt (Bild 8). Das eine Leitungsbündel führt nur abgehenden Verkehr (intern bzw. extern), das zweite Leitungsbündel führt nur ankommenden Verkehr (intern bzw. extern) (vgl. das Beispiel in Abschnitt 3, Bild 6).

Betriebsart 3 (vgl. Abschnitt 7)

<table>
<thead>
<tr>
<th>Stufe</th>
<th>1</th>
<th>2</th>
<th>s</th>
<th>3 Leitungsbündel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bild 9: Linksystem mit Betriebsart 3.

Betriebsart 4 (vgl. Abschnitt 7)

<table>
<thead>
<tr>
<th>Stufe</th>
<th>1</th>
<th>2</th>
<th>s</th>
<th>4 Leitungsbündel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bild 10: Linksystem mit Betriebsart 4.

Bei Betriebsart 4 sind die "rechtssseitigen" Leitungen der letzten Stufe des Linksystems in vier einfach-gerichtete Leitungsbündel aufgeteilt (Bild 10). Entsprechend wie bei Betriebsart 3 führen zwei einfach-gerichtete Leitungsbündel den abgehenden bzw. ankommenden Internverkehr. Die restlichen zwei einfach-gerichteten Leitungsbündel führen den abgehenden bzw. ankommenden Externverkehr.

Betriebsart 5 (vgl. Abschnitt 8)

<table>
<thead>
<tr>
<th>Stufe</th>
<th>1</th>
<th>2</th>
<th>s</th>
<th>2 Leitungsbündel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bild 11: Linksystem mit Betriebsart 5.

Bei Betriebsart 5 sind die "rechtssseitigen" Leitungen der letzten Stufe des Linksystems in zwei doppelt-gerichtete Leitungsbündel aufgeteilt (Bild 11). Das eine Leitungsbündel führt den Internverkehr (abgehend bzw. ankommend), das zweite Leitungsbündel führt den Externverkehr (abgehend bzw. ankommend).

Für die Verlustberechnung in den nachfolgenden Kapiteln IV.5, 6, 7 und 8 muß die Verlustwahrscheinlichkeit aus zahlreichen Teilverlusten des abgehenden bzw. ankommenden Verkehrs in der Stufe s zusammengesetzt werden. In der folgenden Tabelle 1 (Seite 47a - 47c) wird gezeigt, wie sich der Gesamtverlust bei den verschiedenen Betriebsarten, Verkehrsarten usw. aus den einzelnen Verlustwahrscheinlichkeiten zusammensetzt. Es wird jeweils mittels Gleichungs- und Seitennummer die Stelle angegeben, wo diese Verluste berechnet werden.
Tabelle 1 (1. Teil): Die verschiedenen Verlustwahrscheinlichkeiten. (Fortsetzung Seite 47b)

<table>
<thead>
<tr>
<th>Zufallsverkehr</th>
<th>1. Art</th>
<th>2. Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wegesuchalgorithmus</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Betriebsart</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$B = B_{eg} + B_{ek} + B_1$</td>
<td>G1.(IV.34), S. 60</td>
<td>G1.(IV.12), S. 61</td>
</tr>
<tr>
<td>$B_{eg} = f(b_{eg})$</td>
<td>G1.(IV.31), S. 60</td>
<td>G1.(IV.102), S. 97</td>
</tr>
<tr>
<td>$B_{ek} = f(b_{ek})$</td>
<td>G1.(IV.32), S. 60</td>
<td>G1.(IV.102), S. 97</td>
</tr>
<tr>
<td>$B_1 = f(b_1)$</td>
<td>G1.(IV.33), S. 60</td>
<td>G1.(IV.102), S. 97</td>
</tr>
<tr>
<td>$b_{eg} = f(e_{eg}^b_{1}, [m_{1p}]{eg}, [m]^b{eg})$</td>
<td>G1.(IV.11), S. 61</td>
<td>G1.(IV.102), S. 97</td>
</tr>
<tr>
<td>$e_{eg}^b_{1}$</td>
<td>G1.(IV.55), S. 74</td>
<td>G1.(IV.102), S. 97</td>
</tr>
<tr>
<td>$[m_{1p}]_{eg}$</td>
<td>G1.(IV.68), S. 77</td>
<td>G1.(IV.102), S. 97</td>
</tr>
<tr>
<td>$[m]^b_{eg}$</td>
<td>G1.(IV.153), S. 145</td>
<td>wie bei ZV 1</td>
</tr>
<tr>
<td>$b_{ek} = f(e_{ek}^b_{1}, [m_{1p}]{ek}, [m]^b{ek})$</td>
<td>G1.(IV.12), S. 61</td>
<td>G1.(IV.102), S. 97</td>
</tr>
<tr>
<td>$e_{ek}^b_{1}$</td>
<td>G1.(IV.56), S. 74</td>
<td>G1.(IV.102), S. 97</td>
</tr>
<tr>
<td>$[m_{1p}]_{ek}$</td>
<td>G1.(IV.68), S. 77</td>
<td>G1.(IV.102), S. 97</td>
</tr>
<tr>
<td>$[m]^b_{ek}$</td>
<td>G1.(IV.154), S. 145</td>
<td>wie bei ZV 1</td>
</tr>
<tr>
<td>$b_1 = f(b_k, b_s^{(b)}, b_{(E)})$</td>
<td>G1.(IV.29), S. 67</td>
<td>G1.(IV.12), S. 61</td>
</tr>
<tr>
<td>$b_k = b_{kg} + b_{kk}$</td>
<td>G1.(IV.13), S. 56</td>
<td>G1.(IV.12), S. 61</td>
</tr>
<tr>
<td>$b_{kg} = f(k_{kg}^b_{1}, c^{(E)}{ll}/k^{c}{A}, [m]{kg}, [m]{kg})$</td>
<td>G1.(IV.13), S. 63</td>
<td>G1.(IV.12), S. 61</td>
</tr>
<tr>
<td>$b_{kk} = f(k_{kk}^b_{1}, c^{(E)}{ll}/k^{c}{A}, [m]{kk}, [m]{kk})$</td>
<td>G1.(IV.14), S. 64</td>
<td>G1.(IV.12), S. 61</td>
</tr>
</tbody>
</table>

Tabelle 1 (2. Teil): Die verschiedenen Verlustwahrscheinlichkeiten. (Fortsetzung Seite 47c)

<table>
<thead>
<tr>
<th>Zufallsverkehr</th>
<th>1. Art</th>
<th>2. Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wegesuchalgorithmus</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Betriebsart</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$k_{eg}^b_{1}$</td>
<td>G1.(IV.97), S. 74</td>
<td>G1.(IV.104), S. 98</td>
</tr>
<tr>
<td>$k_{kg}^b_{1}$</td>
<td>G1.(IV.59), S. 75</td>
<td>G1.(IV.105), S. 101</td>
</tr>
<tr>
<td>$k^{c}{ll}/k^{c}{A}$</td>
<td>G1.(IV.61), S. 76</td>
<td>G1.(IV.107), S. 98</td>
</tr>
<tr>
<td>$k^{c}{ll}/k^{c}{A}$</td>
<td>G1.(IV.62), S. 76</td>
<td>G1.(IV.108), S. 98</td>
</tr>
<tr>
<td>$[m_{1y}]{bk}, [m{1y}]{bk}, [m{1y}]_{bk}$</td>
<td>G1.(IV.69), S. 77, (IV.70), S. 78, (IV.71), S. 78</td>
<td>G1.(IV.69), S. 77, (IV.70), S. 78, (IV.71), S. 78</td>
</tr>
<tr>
<td>$[m]_{1g}$</td>
<td>(IV.45), (IV.155), S. 145</td>
<td>(IV.171), (IV.183), S. 160</td>
</tr>
<tr>
<td>$[m]_{1k}$</td>
<td>(IV.47), (IV.156), S. 145</td>
<td>(IV.172), (IV.184), S. 160</td>
</tr>
<tr>
<td>$b_{sg}^{(b)} = b_{sg}^{(b)}$</td>
<td>G1.(IV.18b), S. 65</td>
<td>G1.(IV.16c), S. 66</td>
</tr>
<tr>
<td>$b_{sk}^{(b)} = f(s_{eg}^{(b)}c_{ll}/s_{A}^{c}, [m]{sg}, [m]{sk})$</td>
<td>G1.(IV.16b), S. 65</td>
<td>G1.(IV.16c), S. 66</td>
</tr>
<tr>
<td>$b_{sk}^{(b)} = f(s_{eg}^{(b)}c_{ll}/s_{A}^{c}, [m]{sg}, [m]{sk})$</td>
<td>G1.(IV.16b), S. 65</td>
<td>G1.(IV.16c), S. 66</td>
</tr>
<tr>
<td>$b_{sk}^{(E)} + b_{sk}$</td>
<td>G1.(IV.18c), S. 67</td>
<td>G1.(IV.16b), S. 65</td>
</tr>
<tr>
<td>$b_{sg}^{(E)} = f(s_{eg}^{(b)}c_{ll}/s_{A}^{c}, [m]{sg}, [m]{sk})$</td>
<td>G1.(IV.16c), S. 66</td>
<td>G1.(IV.16b), S. 65</td>
</tr>
</tbody>
</table>

Tabelle 1 (2. Teil): Die verschiedenen Verlustwahrscheinlichkeiten. (Fortsetzung Seite 47c)

In Abschnitt 5.1 werden die vorgängigen Parameter behandelt.

In Abschnitt 5.2 wird zunächst die Betriebsart 1 behandelt.

In Abschnitt 5.3 wird zunächst die Betriebsart 1 behandelt.

In Abschnitt 5.4 werden die jeweiligen charakteristischen Verlustwahrscheinlichkeiten berechnet.

In Abschnitt 5.5 wird die Wahrscheinlichkeit der Verlustwahrscheinlichkeiten berechnet.

In Abschnitt 5.6 wird die Wahrscheinlichkeit der Verlustwahrscheinlichkeiten berechnet.

In Abschnitt 5.7 werden die Ergebnisse der Berechnung miteinander verglichen.
Das Linkssystem hat ein Leitungsbündel hinter der Stufe s (R = 1), (Für s = 2 und ZV 1 is in /12/ diese Betriebsart in vereinfachter Form bereits untersucht worden.)

Auf diesem einzelnen Leitungsbündel werden alle 3 Verkehrstypen, also abgehender Externverkehr, ankommender Externverkehr und abgehender und ankommender Teil des Internverkehrs, abgewickelt. D.h., eine Interneverbindung belegt auf diesem einem Leitungsbündel gleichzeitig zwei Leitungen.

Bei der Wegesuche kann von jedem abgehenden bzw. ankommenden Externverkehr jede der n e Leitungen auf frei oder besetzt geprüft werden (vgl. Abschnitt 3.2).

Solche Linkssysteme mit einem Leitungsbündel, auf dem alle 3 Verkehrstypen geführt werden, können z.B. in zukünftigen PCM-Vermittlungssystemen auftreten /36/.

Den n e Leitungen hinter der Stufe s der TW-Koppelanordnung entsprechen n e Zeilagen sowohl im gehenden als auch im kommenden Highway. (Dies entspricht einer 2-Draht-Durchschaltung in der TW-Koppelanordnung und einer 4-Draht-Durchschaltung nach der Gabel G.)

RW-Zeitvielfach-Koppelanordnungen werden z.B. in /38/ für den blockierungsfreien Fall betrachtet.

2.2 Die gegebenen Größen

Gegeben sind die strukturparameter des Linkssystem und dessen Belastungen auf dem Leitungsbündel hinter der Stufe s:

- Y e : Belastung des Bündels mit Internverkehr (Internbelastung)
- Y eg : Belastung mit abgehenden Externverkehr (abgehende Externbelastung)

Damit ergibt sich die Gesamtbelastung:

\[Y_{ges} = Y_e + Y_{eg} + Y_{ek} \] \hspace{1cm} (IV.1)

Die gesamte Externbelastung ergibt sich zu:

\[Y_e = Y_{eg} + Y_{ek} \] \hspace{1cm} (IV.2)

Damit liegen die (gegebenen) Belastungen des Linkssystems fest. Um eine übersichtliche Darstellung zu erhalten wird das Verhältnis von Intern- zu Gesamtbelastung eingeführt:

\[d_{ges} = \frac{Y_e}{Y_{ges}} \] \hspace{1cm} (IV.3)
Zur Berechnung der mittleren Prüfbarkeit \(m \) werden die Belastungen je Koppelvielfach in den verschiedenen Koppelstufen des Linkssystems benötigt (vgl. Gl.(III.10)).

Es gilt:

\[
Y_\nu = \frac{Y_{\text{res}}}{\varepsilon_\nu}
\]

für \(\nu = 1,2,\ldots,\varepsilon \) \((IV.4)\)

Insbesondere wird zur Berechnung der Wahrscheinlichkeit \(w(k_1) \) (Eingangsblockierung der Stufe 1) die Belastung \(Y_1 \) dieser \(k_1 \) Leitungen benötigt.

Nach Gl.(IV.4) ist:

\[
Y_1 = \frac{Y_{\text{res}}}{\varepsilon_1}
\]

Entsprechend werden die externen Belastungen eines Koppelvielfachs der Stufe 1 berechnet:

\[
\begin{align*}
e
Y_1 &= \frac{Y_e}{\varepsilon_1} \\
eg
Y_1 &= \frac{Y_{eg}}{\varepsilon_1} \\
ek
Y_1 &= \frac{Y_{ek}}{\varepsilon_1}
\end{align*}
\]

\((IV.5)\)

Die interne Belastung ist:

\[
Y_1 = \frac{Y_1}{\varepsilon_1}
\]

\((IV.6)\)

Gemäß der Definition des Internverkehrs in Kapitel IV.2 wird bei der Betrachtung eines Koppelvielfachs der Stufe 1 zwischen koppelvielfachinterner und systeminterner Verkehr unterschieden.

Beim koppelvielfachinternen Verkehr ist Ursprungskoppelvielfach gleich Zielkoppelvielfach. Unter der Voraussetzung, dass sich der ankommende Teil des Internverkehrs gleichmäßig auf die \(\varepsilon_1 \) Koppelvielfache der Stufe 1 aufteilt, ergibt sich die koppelvielfach-interne Belastung zu:

\[
k
Y_1 = \frac{I Y_1}{\varepsilon_1} = \frac{1}{\varepsilon_1} \frac{1}{\varepsilon_1} Y_1
\]

\((IV.7)\)

D.h. der \(\varepsilon_1 \)-te Teil der Internrufe belegt von den \(k_1 \) Leitungen eines Koppelvielfachs der Stufe 1 gleichzeitig zwei Leitungen (eine abgehende und eine ankommende Leitung).

Die systeminterne (aber nicht koppelvielfachinterne) Belastung ergibt sich zu:

\[
s Y_1 = I Y_1 - k Y_1 = (1 - \frac{1}{\varepsilon_1}) \frac{Y_1}{\varepsilon_1}
\]

\((IV.8)\)

Um eine übersichtliche Darstellung zu erhalten, werden folgende auf ein Koppelvielfach der Stufe 1 bezogene Größen eingeführt:

- Verhältnis koppelvielfachinterne Belastung zu Gesamtbelastung:

\[
k^d_1 = \frac{k Y_1}{Y_1}
\]

\((IV.9)\)

- Verhältnis systeminterne Belastung zu Gesamtbelastung:

\[
s^d_1 = \frac{s Y_1}{Y_1}
\]

\((IV.10)\)

5.4 Die gesuchten charakteristischen Verkehrsgrößen

5.4.1 Gemeinsame Beziehungen für ZV 1 und ZV 2

5.4.1.1 Berechnung der Verkehrsgrößen, wenn keine Zwischenblockierungen auftreten

In der Praxis werden oft Linkssysteme eingesetzt, bei denen wegen der Struktur des Linkssystems entweder keine Zwischenblockierungen auftreten oder aber die Zwischenblockierungen gegenüber den anderen Verlustwahrscheinlichkeitsanteilen (infolge von Eingangs- bzw. Bündelblockierung) vernachlässigbar klein sind.

Deshalb werden zunächst der Übersichtlichkeit halber die verschiedenen Verlustwahrscheinlichkeiten ohne Zwischenblockierungen angegeben. In Abschnitt 5.4.1.2 werden dann die Zwischenblockierungen bei der Verlustberechnung berücksichtigt.

Ohne Berücksichtigung der Zwischenblockierungen setzen sich die Verluste des extern abgehenden Verkehrangebots aus 2 Teilen zusammen, nämlich
a) jenen Verlustrufen, die infolge von Eingangsblockierung der Stufe 1 entstehen

b) jenen Verlustrufen, die infolge von Bündelblockierung entstehen. (Der Begriff "Abnehmerblockierung" (vgl. Kapitel III.2, CITB) wird hier ersetzt durch den Begriff "Bündelblockierung", da das Leitungsbündel hinter der Stufe s abgehenden und ankommenden Verkehr abwickelt und deshalb nicht mehr als Abnehmerbündel bezeichnet werden kann.)

Diese Verlustrufe werden jeweils bezogen auf die Gesamtzahl der angebotenen Rufe des abgehenden Externerverkehrs. Analog zu Gl.(III.3) in Kapitel III.2 erhält man die Verlustwahrscheinlichkeit des abgehenden Externverkehrs zu:

$$b_{eg} = e_{g1} + (1 - e_{g1})[m]_{eg}$$ \hspace{1cm} (IV.11a)

hierbei ist:

e_{g1} : Wahrscheinlichkeit (vgl.), daß ein abgehender Externruf infolge von Eingangsblockierung (Blockierung des Ursprungssteifachverkehrs) verloren geht.

$m]_{eg}$: Wach., daß Bündelblockierung für abgehende Externrufe existiert. Die mittlere Prüfnahme m wird hier nicht weiter indiziert, da bei Betriebsart 1 nur ein Leitungsbündel hinter der Stufe s vorhanden ist.

Wie bereits in Abschnitt 3.2 ausgeführt, wird für den ankommenden Externverkehr, ebenso wie für den abgehenden Externverkehr, "Punktbündel-Markierung" zugrunde gelegt. D.h. die Wegesuche erfolgt ausgehend vom Zielkoppelvielfach konjugiert bis zum Leitungsbündel hinter der Stufe s.

Die Verlustrufe des extern ankommenden Verkehrsangebots setzen sich deshalb aus den folgenden 2 Teilen zusammen (entsprechend zu den Verlustrufen des extern abgehenden Verkehrsangebots):

a) jenen Verlustrufen, die infolge von Blockierung des Zielkoppelvielfachs in der Stufe 1 entstehen (dieser Fall entspricht der Eingangsblockierung $w(k_1)$)

und

b) jenen Verlustrufen, die infolge von Bündelblockierung entstehen.

Diese Verlustrufe werden wieder jeweils bezogen auf die Gesamtzahl der angebotenen Rufe des ankommenden Externverkehrs. Damit gilt für die Verlustwahrscheinlichkeit des extern ankommenden Verkehrs:

$$b_{ek} = e_{k1} + (1 - e_{k1})[m]_{ek}$$ \hspace{1cm} (IV.12a)

hierbei ist:

e_{k1} : Wach., daß ein ankommender Externruf infolge von Blockierung des Zielkoppelvielfachs verloren geht.

$m]_{ek}$: Wach., daß Bündelblockierung für ankommende Externrufe existiert.

Die Verlustwahrscheinlichkeit des Internverkehrs setzt sich zusammen aus den Verlustwahrscheinlichkeiten des koppelvielfachinternen und des systeminternen Verkehrs. Es müssen also zunächst diese koppelvielfachinternen bzw. systeminternen Teilverlustwahrscheinlichkeiten berechnet werden.

Die koppelvielfachinternen Verlustwahrscheinlichkeit b_{k}

(Im folgenden wird "koppelvielfachintern" wegen der kürzeren Schreibweise mit "kv-intern" abgekürzt.)

Die kv-interne Verlustwahrscheinlichkeit setzt sich aus den Verlustwahrscheinlichkeitsanteilen in abgehender und in ankommender Richtung zusammen.

- Kv-interne Verlustrufe treten in abgehender Richtung entweder infolge von Blockierung des Ursprungssteifachverkehrs auf, ferner, solange dieses Koppelvielfach nicht blockiert ist, durch Bündelblockierung (vgl. hierzu auch Gl.(IV.11a)). Damit ergibt sich die kv-interne Verlustwahrscheinlichkeit b_{kg} in abgehender Richtung, bezogen auf das kv-interne Angebot:

$$b_{kg} = k_{g1} + k_{g1}c_{k}c_{k} [m]_{kg}$$ \hspace{1cm} (IV.13a)
Hierbei ist:

\[k_{b1}^g : \text{Wsc., daß ein kv-interner Ruf in abgehender Richtung infolge von Blockierung des Ursprungskoppelvielfachs verloren geht.} \]

\[k_{cL1}^C / k_{CA}^C : \text{Relativer Anteil der kv-internen abgehenden Rufe, die im Ursprungskoppelvielfach eine freie Zwischenleitung finden.} \]

Wie später noch ausführlich gezeigt wird, ist sowohl bei ZV 1 als auch bei ZV 2 und Wegesuchalgorithmus 1 \(k_{cL1}^C / k_{CA}^C = 1 - k_{b1}^g \), jedoch gilt dies nicht bei ZV 2 und Wegesuchalgorithmus 2. Deshalb wird hier zunächst allgemein der obige Term eingeführt.

\[[m]_{1g} : \text{Wsc., daß Bündelblockierung für Internrufe in abgehender Richtung existiert.} \]

- Bei der Berechnung der \(b_{kk}^g \) in ankomender Richtung wird wie beim ankomenden Externverkehr "Punkt-Bündel-Markierung" von Zielkoppelvielfach zum Leitungsübeld hinter der Stufe des Linksystems vorausgesetzt. In ankomender Richtung treten deshalb kv-interne Verlustrufte auf, entweder infolge von Blockierung des Zielkoppelvielfachs (= Ursprungskoppelvielfach); oder außerhalb des Zustands "Blockierung des Zielkoppelvielfachs" durch Bündelblockierung (aber nur dann, wenn der Ruf nicht bereits in abgehender Richtung verloren gegangen ist).

Es ergibt sich:

\[b_{kk}^g = k_{b1}^g (1 - [m]_{1g}) + k_{cL1}^C [m]_{ik} \] \hspace{1cm} (IV.14a)

hierbei ist:

\[k_{b1}^g : \text{Wsc., daß ein ankommender kv-interner Ruf infolge von Blockierung des Ursprungskoppelvielfachs (= Ursprungskoppelvielfach) und nicht bereits in abgehender Richtung durch Blockierung des Ursprungskoppelvielfachs verloren geht.} \]

(1 - [m]_{1g}) : Wsc., daß für abgehende Internrufe keine Bündelblockierung existiert.

\[k_{cL1}^C / k_{CA}^C : \text{Relativer Anteil der kv-internen Rufe, die im Ursprungskoppelvielfach (= Zielkoppelvielfach) sowohl in abgehender als auch in ankomrender Richtung eine freie Zwischenleitung finden (vgl. auch die Bemerkung zu Gl.(IV.13a)).} \]

\[[m]_{ik} : \text{Wsc., daß Bündelblockierung für Internrufe in ankomender aber nicht in abgehender Richtung existiert.} \]

Die kv-internen Verlustwahrscheinlichkeiten \(b_{kg}^g \) nach Gl.(IV.13a) bzw. \(b_{kk}^g \) nach Gl.(IV.14a) schließen sich gegenseitig aus, deshalb ergibt sich die kv-interne Verlustwahrscheinlichkeit \(b_k^g \) zu:

\[b_k^g = b_{kg}^g + b_{kk}^g \] \hspace{1cm} (IV.15)

Die systeminterne Verlustwahrscheinlichkeit \(b_{SG}^g \)

Die systeminterne Verlustwahrscheinlichkeit setzt sich ebenfalls zusammen aus den Verlustwahrscheinlichkeitsanteilen in abgehender und in ankomender Richtung.

- Die systeminterne Verlustwahrscheinlichkeit \(b_{SG}^g \) in abgehender Richtung, bezogen auf das systemintere Angebot, wird entsprechend zur kv-internen Verlustwahrscheinlichkeit \(b_{kg}^g \) in abgehender Richtung berechnet. Es ist:

\[b_{SG}^g = s_{b1}^g + s_{cL1}^C s_{CA}^C [m]_{1g} \] \hspace{1cm} (IV.16a)

hierbei ist:

\[s_{b1}^g : \text{Wsc., daß ein systeminterner Ruf in abgehender Richtung infolge von Blockierung des Ursprungskoppelvielfachs verloren geht.} \]

\[s_{cL1}^C / s_{CA}^C : \text{Relativer Anteil der systeminternen abgehenden Rufe, die im Ursprungskoppelvielfach eine freie Zwischenleitung finden.} \]
- Entsprechend wie beim ankommenden kv-internen Verkehr treten systeminterner Verlustrufe in ankommender Richtung auf, entweder infolge von Blockierung des Zielkoppelvielfachs (≠ Ursprungskoppelvielfach); oder außerhalb des Zustands "Blockierung des Zielkoppelvielfachs" durch Bündelblockierung (aber nur dann, wenn der Ruf nicht bereits in abgehender Richtung verloren gegangen ist).

Es ergibt sich:

\[b_{sk} = \frac{sk^{\text{VI}}}{s^A} (1 - [m]_{1g}) + \frac{sk^{\text{LI}}}{s^A} [m]_{1k} \]

(IV.17a)

hierbei ist:

\[\frac{sk^{\text{VI}}}{s^A} : \text{Relativer Anteil jener systeminternen Rufe, die zwar in abgehender Richtung in ihrem eigenen Ursprungskoppelvielfach einen freien Ausgang finden, aber in ankommender Richtung infolge von Blockierung des Zielkoppelvielfachs verloren gehen.} \]

\[(1 - [m]_{1g}) : \text{WSch., daß für den abgehenden Internverkehr keine Bündelblockierung existiert.} \]

\[\frac{sk^{\text{LI}}}{s^A} : \text{Relativer Anteil der systeminternen Rufe, die sowohl im Ursprungskoppelvielfach in abgehender Richtung als auch im Zielkoppelvielfach (≠ Ursprungskoppelvielfach) in ankommender Richtung eine freie Leitung finden.} \]

Die systeminternen Verlustwahrscheinlichkeiten \(b_{skg} \) nach Gl.(IV.16a) bzw. \(b_{sk} \) nach Gl.(IV.17a) schließen sich gegenseitig aus, deshalb ergibt sich die systeminterne Verlustwahrscheinlichkeit \(b_s \) zu:

\[b_s = b_{sg} + b_{sk} \]

(IV.18a)

Sind diese externen und internen Verlustwahrscheinlichkeiten (bei vorgeschriebenen Belastungswerten) berechnet, so können die verschiedenen zugehörigen Verkehrsangebote bestimmt werden, es ist:

- das Externangebot in abgehender Richtung:

\[A_{eg} = \frac{Y_{eg}}{1 - b_{eg}} \]

(IV.19)

- das Externangebot in ankommender Richtung:

\[A_{ek} = \frac{Y_{ek}}{1 - b_{ek}} \]

(IV.20)

Die interne Gesamtbelastung teilt sich auf in ihren kv-internen Teil \(Y_k \) und ihren systeminternen Teil \(Y_s \) \((Y_i = Y_k + Y_s) \). Daraus ergibt sich:

- das kv-interne Angebot:

\[A_k = \frac{Y_k}{2(1 - b_k)} \]

(IV.21)

- das systeminterne Angebot:

\[A_s = \frac{Y_s}{2(1 - b_s)} \]

(IV.22)

Der Faktor 2 in Gl.(IV.21) und (IV.22) rührt daher, daß jeder erfolgreiche Internruf zwei Leitungen belegt, die zu einem Anruf gehören.
Damit ergibt sich das interne Gesamtangebot zu:

\[A_1 = A_k + A_S \] \hspace{1cm} (IV.23)

Wird von der Voraussetzung ausgegangen, daß sich das gesamte Angebot des Internverkehrs \(A_1 \) gleichmäßig auf alle \(\xi_1 \) Koppelvielfache der Stufe 1 aufteilt, dann ergibt sich für das kv-interne Angebot des gesamten Linksystems:

\[A_k = \frac{1}{\xi_1} A_1 \] \hspace{1cm} (IV.24)

also für das systeminterne Angebot:

\[A_S = (1 - \frac{1}{\xi_1}) A_1 \] \hspace{1cm} (IV.25)

Mit Gl. (IV.21) bis (IV.25) ergibt sich die gesamte Intern-Verkehrsbelastung:

\[Y_1 = \frac{A_k}{\xi_1} \cdot 2(1 - b_k) + \frac{A_S}{\xi_1} \cdot 2(1 - b_S) \] \hspace{1cm} (IV.26)

\[Y_k \underline{Y}_S \]

Damit ergibt sich das interne Gesamtangebot:

\[A_1 = \frac{Y_1}{2} \frac{1}{\xi_1} (1 - b_k) + \frac{1}{\xi_1} (1 - b_S) \] \hspace{1cm} (IV.27)

Andererseits gilt (definitionsgemäß):

\[A_1 = \frac{Y_1}{2} \frac{1}{1 - b_1} \] \hspace{1cm} (IV.28)

Mit Gl. (IV.27) und (IV.28) ergibt sich die Wahrscheinlichkeit für den gesamten Internverlust (kv-intern oder systemintern), bezogen auf alle (abgehend) angebotenen Internrufe:

\[b_1 = \frac{1}{\xi_1} b_k + (1 - \frac{1}{\xi_1}) b_S \] \hspace{1cm} (IV.29a)

Damit sind alle Einzelverlustwahrscheinlichkeiten, bezogen auf das jeweilige Angebot, bestimmt. Für die Dimensionierung eines Linksystems ist aber noch die Gesamtverlustwahrscheinlichkeit, bezogen auf das Gesamtangebot, von Interesse. Es ist:

\[A_{ges} = A_{eg} + A_{ek} + A_1 \] \hspace{1cm} (IV.30)

Damit wird:

- der Externverlust abgehend, bezogen auf alle Rufe:

\[B_{eg} = \frac{A_{ek}}{A_{ges}} b_{eg} \] \hspace{1cm} (IV.31)

- der Externverlust ankommend, bezogen auf alle Rufe:

\[B_{ek} = \frac{A_{ek}}{A_{ges}} b_{ek} \] \hspace{1cm} (IV.32)

- der Internverlust, bezogen auf alle Rufe:

\[B_1 = \frac{A_1}{A_{ges}} b_1 \] \hspace{1cm} (IV.33)

Die Summe dieser 3 Verlustwahrscheinlichkeiten ergibt die Gesamtverlustwahrscheinlichkeit (bezogen auf alle angebotenen Rufe):

\[B = B_{eg} + B_{ek} + B_1 \] \hspace{1cm} (IV.34)
5.4.1.2 Berechnung der Verlustwahrscheinlichkeiten, wenn Zwischenblockierungen auftreten

Treten Zwischenblockierungen auf, so wird Gl. (IV.11a) und Gl. (IV.12a) (Abschnitt 5.4.1.1) entsprechend zu Gl. (III.7) modifiziert (vgl. Kapitel III.2). Es gilt für die Verlustwahrscheinlichkeit des abgehenden Externverkehrs:

\[b_{eg} = e_{g} b_{1} + (1-e_{g}) b_{1} \left[1 - \sum_{\nu=2}^{s-1} \left(1 - \left[m_{1\nu} \right]_{eg} \right) \left(1 - \left[m_{eg} \right] \right) \right] \quad (IV.11b) \]

hierbei ist:

\[\left[m_{1\nu} \right]_{eg} : \text{Wach., daß der abgehende Externverkehr Zwischenblockierung zwischen der Stufe \(\nu \) und der Stufe \(\nu+1 \) existiert.} \]

Entsprechend gilt für die Verlustwahrscheinlichkeit des ankommlenden Externverkehrs:

\[b_{ek} = e_{k} b_{1} + (1-e_{k}) b_{1} \left[1 - \sum_{\nu=2}^{s-1} \left(1 - \left[m_{1\nu} \right]_{ek} \right) \left(1 - \left[m_{ek} \right] \right) \right] \quad (IV.12b) \]

mit:

\[\left[m_{1\nu} \right]_{ek} : \text{Wach., daß der ankommende Externverkehr Zwischenblockierung zwischen der Stufe \(\nu \) und der Stufe \(\nu+1 \) existiert.} \]

Für\(\left[m_{1\nu} \right]_{eg} = \left[m_{1\nu} \right]_{ek} = 0 \quad (\nu = 2, 3, \ldots, s-1) \) gehen die Gleichungen (IV.11b) bzw. (IV.12b) in die Gl. (IV.11a) bzw. (IV.12a) über.

Zur Berechnung der Verlustwahrscheinlichkeiten des Internverkehrs bei möglichen Zwischenblockierungen muß zusätzlich zur Unterscheidung zwischen kw-internem und systeminternem Verkehr noch eine weitere Unterteilung des Internverkehrs vorgenommen werden (Bild 14).

\[\begin{array}{cccc}
\text{Stufe} & 1 & 2 & 3 \\
\text{Block} 1 & \times & \times & \times \\
\text{Block} 0 & \times & \times & \times \\
\end{array} \]

(1) blockinterner Verkehr

\[b_{1} > k_{2} \]

(2) nicht-blockinterner Verkehr

Bild 14: 3-stufiges Linkssystem mit Zwischenblockierung in der Stufe 2.

In Bild 14 wurde als Beispiel ein 3-stufiges Linkssystem mit Zwischenblockierung in der Stufe 2 \((l_{2} > k_{2}) \) gewählt. Hierbei ist das Linkssystem zwischen der Stufe 1 und der Stufe 2 in G Linkblöcke unterteilt. D.h. ein Ruf, der in ein Koppelvielraf der Stufe 1 einfällt, erreicht zwischen der Stufe 2 und der Stufe 3 nur bestimmte \((g_{2}k_{2})/G \) Leitungen. Deshalb muß, wie bei der Unterscheidung "kv-intern" und "systemintern", auch hier unterschieden werden zwischen dem Anteil des Internverkehrs der innerhalb desselben Zwischenleitungsverbündels \((g_{2}k_{2})/G \) Leitungen (zwei Leitungen belegt) und dem Anteil der jeweils eine Leitung in verschiedenen Zwischenleitungsverbündeln belegt.

Dementsprechend wird unterschieden (vgl. Bild 14):

(1) Blockinterner Verkehr: Dies ist jener Teil des Internverkehrs, der innerhalb desselben Zwischenleitungsverbündels mit \((g_{2}k_{2})/G \) Leitungen gleichzeitig zwei Leitungen belegt. Dieser Verkehr wird mit einem zusätzlichen Index \(b \) gekennzeichnet.

(2) Nicht-blockinterner Verkehr: Dies ist jener Teil des Internverkehrs, der jeweils eine Leitung in zwei verschiedenen Zwischenleitungsverbündeln belegt. Dieser Verkehr wird mit einem zusätzlichen Index \(b \) gekennzeichnet.

Für den Fall, daß nur ein Linkblock vorhanden ist \((G = 1) \), ist natürlich der gesamte Internverkehr gleich dem blockinternen Verkehr, da dann jede Internbelegung auf den insgesamt vorhandenen \(g_{2}k_{2} \) Zwischenleitungen zwischen der Stufe 2 und der Stufe 3 immer zwei Leitungen belegt.

Für die bisher eingeführten Verkehrsteile des Internverkehrs bedeutet dies:

- kw-interner Verkehr ist immer auch blockinterner Verkehr,
- systeminterner Verkehr muß zusätzlich aufgeteilt werden in den blockinternen und nicht-blockinternen Anteil.

Es werden deshalb folgende neue, interne Verlustwahrscheinlichkeitsanteile eingeführt:

- die system- und blockintere Verlustwahrscheinlichkeit \(b_{8}(b) \),
- die systemintere aber nicht blockintere Verlustwahrscheinlichkeit \(b_{8}(b) \).
Diese kv-externen und verschiedenen systeminternen Teilverlustwahrscheinlichkeiten werden im folgenden mit Berücksichtigung der Zwischenblockierungen berechnet.

Die \(b_{kg} \) \text{ in abgehender Richtung, bezogen auf das kv-interne Angebot, ergibt sich entsprechend zum Externverkehr (vgl. Gl. (11b) bzw. Gl. (13a)):

\[
b_{kg} = k_{b} b_{1} + \frac{k_{C}^{L}_{1}}{k_{A}^{C}} \cdot \left(1 - \sum_{\nu=2}^{s-1} \left(1 - \nu_{\nu}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \right)
\]

(IV.13b)

hierbei ist:

\[\nu_{\nu}^{bg} : \text{Woch., daß Zwischenblockierung für abgehende kv-interne Rufe zwischen der Stufe } \nu \text{ und der Stufe } \nu+1 \text{ existiert (kv-externer Verkehr ist gleichzeitig auch blockinterner Verkehr, deshalb der Index } b)\.

Gl. (IV.13b) geht für \(\nu_{\nu}^{bg} = 0 \) \((\nu=2, \ldots, s-1)\) über in Gl. (IV.13a).)

Zur Verdeutlichung wird Gl. (IV.13b) für den Fall eines 3-stufigen Linkssystems \((s=3)\) mit Zwischenblockierung zwischen der Stufe 2 und der Stufe 3 dargestellt:

\[
b_{kg} = k_{b} b_{1} + \frac{k_{C}^{L}_{1}}{k_{A}^{C}} \cdot \left(1 - \nu_{12}^{bg} \left(1 - \nu_{1g}^{bg} \right) \right)
\]

In ankomender Richtung setzen sich die Verlustrate des kv-internen Verkehrsangebots aus folgenden Teilen zusammen:

a) Jenen Verlustrufen, die infolge von Blockierung des Zielkoppelvielfachs (ursprungskoppelvielfach) in der Stufe 1 entstehen und die in abgehender Richtung nicht blockiert wurden (Term I in der nachfolgenden Gl. (IV.14b)).

b) Jenen Verlustrufen, die infolge von Zwischenblockierung zwischen der Stufe \(\nu \) und der Stufe \(\nu+1 \) in ankomender Richtung entstehen \((\nu=2, 3, \ldots, s-1)\), die also weder in abgehender noch in der Stufe \(\nu-1 \) in ankomender Richtung blockiert wurden (Term II in der nachfolgenden Gl. (IV.14b)).

c) Jenen Verlustrufen, die in ankomender Richtung durch Bündelblockierung entstehen, die also weder in abgehender noch bis zur Stufe \(s-1 \) in ankomender Richtung (Markierung vom Zielkoppelvielfach aus \(\nu \)) blockiert wurden (Term III in der nachfolgenden Gl. (IV.14b)).

Damit ergibt sich die kv-interne Verlustwahrscheinlichkeit \(b_{kk} \) in ankomender Richtung:

\[
b_{kk} = k_{b} b_{1} + \frac{k_{C}^{L}_{1}}{k_{A}^{C}} \sum_{\nu=2}^{s-1} \left(1 - \nu_{\nu}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \]

(Term I)

\[
+ \frac{k_{C}^{L}_{1}}{k_{A}^{C}} \sum_{\nu=2}^{s-1} \left(1 - \nu_{\nu}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \]

(Term II)

\[
+ \frac{k_{C}^{L}_{1}}{k_{A}^{C}} \sum_{\nu=2}^{s-1} \left(1 - \nu_{\nu}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \]

(Term III)

(IV.14b)

hierbei ist:

\[\nu_{\nu}^{bg} : \text{Woch., daß Zwischenblockierung für kv-interne Rufe in ankomender aber nicht in abgehender Richtung zwischen der Stufe } \nu \text{ und der Stufe } \nu+1 \text{ existiert (kv-externer Verkehr ist gleichzeitig auch blockinterner Verkehr, deshalb der Index } b)\.

\[\nu_{1g}^{bg} : \text{Wach., daß für kv-interne Rufe Zwischenblockierung weder in abgehender noch in ankomender Richtung zwischen der Stufe } \nu \text{ und der Stufe } \nu+1 \text{ existiert.}

Gl. (IV.14b) geht natürlich für \(\nu_{\nu}^{bg} = \nu_{1g}^{bg} = \nu_{1g}^{bg} = 0 \) \((\nu=2, \ldots, s-1)\) in Gl. (IV.14a) über (also der Fall "ohne Zwischenblockierung").

Bemerkung zu Term II von Gl. (IV.14b):

Für ein bestimmtes \(\nu \) wird aus Term II:

\[
\frac{k_{C}^{L}_{1}}{k_{A}^{C}} \left(1 - \nu_{\nu}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \left(1 - \nu_{1g}^{bg} \right) \]

hierbei ist:

\[\nu_{\nu}^{bg} : \text{Wach., daß gerade zwischen der Stufe } \nu \text{ und der Stufe } \nu+1 \text{ Zwischenblockierung in ankomender aber nicht in abgehender Richtung existiert.}

\[\nu_{1g}^{bg} : \text{Wach., daß weder in abgehender noch in ankomender Richtung bis zur Stufe } \nu-1 \text{ Blockierung aufgetreten ist.}

\[\nu_{1g}^{bg} : \text{Wach., daß in abgehender Richtung zwischen der Stufe } \nu+1 \text{ und dem Leitungsbündel hinter der Stufe } s \text{ keine Blockierung aufgetreten ist.}

\[\nu_{1g}^{bg} : \text{Woch., daß zwischen der Stufe } \nu \text{ und der Stufe } \nu+1 \text{ Zwischenblockierung in ankomender aber nicht in abgehender Richtung existiert.}

\[\nu_{1g}^{bg} : \text{Wach., daß weder in abgehender noch in ankomender Richtung bis zur Stufe } \nu-1 \text{ Blockierung aufgetreten ist.}

\[\nu_{1g}^{bg} : \text{Wach., daß in abgehender Richtung zwischen der Stufe } \nu+1 \text{ und dem Leitungsbündel hinter der Stufe } s \text{ keine Blockierung aufgetreten ist.}
Zur Verdeutlichung wird Gl.(IV.14b) ebenfalls (wie (IV.13b)) für ein 3-stufiges Linksystem (s = 3) mit Zwischenblockierung zwischen der Stufe 2 und der Stufe 3 dargestellt:

\[b_{kk} = k_k b_1 \left(1 - \left[m_{12} \cdot b_g \right]_b \cdot \left(1 - \left[m \right]_s \right) \right) + \]
\[+ \frac{k^c L}{k^c A} \cdot \left[m_{12} \right]_{bk} \cdot \left(1 - \left[m \right]_s \right) + \]
\[+ \frac{k^c L}{k^c A} \cdot \left(1 - \left[m \right]_s \right)_{b,k} \cdot \left[m \right]_{1k} \]

Die kv-internen Verlustwahrscheinlichkeiten \(b_{kg} \) nach Gl.(IV.13b) bzw. \(b_{kk} \) nach Gl.(IV.14b) schließen sich gegenseitig aus, d.h. die kv-internen Verlustwahrscheinlichkeit \(b_k \) berechnet sich nach Gl.(IV.15):

\[b_k = b_{kg} + b_{kk} \]

Die system- und blockinterne Verlustwahrscheinlichkeit \(b_{ik}^{(b)} \)

Die system- und blockinterne Verlustwahrscheinlichkeit \(b_{i,k}^{(b)} \) in abgehender Richtung ergibt sich analog zu Gl.(IV.13b):

\[b_{i,k}^{(b)} = b_{kg} b_1 + \frac{b_{i,k}^{(b)}}{s_{c,k}} \cdot \left[1 - \left(1 - \left[m_{1,r} \right]_{bg} \right)_s \left(1 - \left[m \right]_s \right) \right] \]

hierbei ist:

\[\left[m_{1,r} \right]_{bg} \cdot \left(1 - \left[m \right]_s \right)_{bg} : \text{Wach, daß für den nicht-blockinternen Verkehr Zwischenblockierung zwischen der Stufe } s \text{ und der Stufe } s + 1 \text{ in ankommennder aber nicht in abgehender Richtung existiert.} \]

\[\left(1 - \left[m \right]_s \right)_{bg} \cdot \left(1 - \left[m \right]_s \right)_{bg} : \text{Wach, daß für den nicht-blockinternen Verkehr weder in abgehender noch in ankommennder Richtung Zwischenblockierung zwischen der Stufe } s \text{ und der Stufe } s + 1 \text{ existiert.} \]

Gl.(IV.17c) soll wieder am Beispiel eines 3-stufigen Linksystems (s=3) mit Zwischenblockierung zwischen der Stufe 2 und der Stufe 3 verdeutlicht werden:

\[b_{i,k}^{(b)} = \frac{b_{i,k}^{(b)}}{s_{c,k}} \cdot \left(1 - \left[m_{12} \right]_b \cdot \left(1 - \left[m \right]_s \right) \right) + \]
\[+ \frac{s_{i,k}}{s_{c,k}} \cdot \left[1 - \left[m_{1,r} \right]_{bg} \right]_{s} \left(1 - \left[m \right]_s \right)_{bg} \left(1 - \left[m \right]_s \right)_{bg} \]
\[+ \frac{s_{i,k}}{s_{c,k}} \cdot \left(1 - \left[m \right]_s \right)_{b,k} \cdot \left[m \right]_{1k} \]
Die systeminterne aber nicht blockinterne Verlustwahrscheinlichkeit \(b_s^{(b)} \) ergibt sich entsprechend zu G1.(IV.18a):
\[
b_s^{(b)} = b_s^{(eg)} + b_s^{(bk)}
\] (IV.18c)

Für die gesamte interne Verlustwahrscheinlichkeit \(b_1 \) bezogen auf alle angebotenen Internrufe ergibt sich in Erweiterung zu G1.(IV.19a) (vgl. Bild 14):
\[
b_1 = \frac{1}{\bar{b}_k^{(b)}} b_k^{(b)} + \left(\frac{1}{\bar{b}_s^{(b)}} - \frac{1}{\bar{b}_1^{(b)}} \right) b_s^{(b)} + \left(1 - \frac{1}{\bar{b}_s^{(b)}} \right) b_s^{(b)}
\] (IV.29b)

D.h.
- der \(1/\bar{b}_1 \)-te Teil des Internverkehrs ist \(kv \)-interner Verkehr,
- der \((1/\bar{b}_1 - 1/\bar{b}_s^{(b)})\)-te Teil des Internverkehrs ist system- und blockinterner Verkehr und
- der \((1 - 1/\bar{b}_s^{(b)})\)-te Teil des Internverkehrs ist systeminterner aber nicht blockinterner Verkehr.

Für ein Linkssystem mit nur einem Linkblock \((G = 1)\) geht G1.(IV.29b) in G1.(IV.29a) über (in diesem Fall ist \(b_s^{(b)} = b_s^{(b)} \)).

5.4.2 Zusätzliche Verkehrsgrößen bei Zufallsverkehr 2. Art

Bei Zufallsverkehr 2. Art (endliche Quellenzahl) sind außerdem die Verlustwahrscheinlichkeiten und den Verkehrsanbieten noch die Anrufrate \(\alpha \) freie Quelle von Interesse.

Es wird zunächst ein Bündel mit \(n \) Leitungen betrachtet, dem Verkehr von \(q \) Quellen angeboten wird. Jede freie Quelle hat eine gleich große (und während der Hauptverkehrszeit konstante) Anrufrate \(\alpha \).

In einem Zustand \(\{x\} \) des Bündels sind \((q-x)\) Quellen frei, d.h. die Anrufrate ist dann \(\alpha(q-x) \). Mit der Wahrscheinlichkeit \(p(x) \), daß \(x \) Leitungen belegt sind, ergibt sich für das Angebot bei ZV 2:
\[
A = \sum_{x=0}^{n} \alpha(q-x) p(x) = \alpha(q - Y)
\] (IV.35)

Hierbei ist \(Y \) die Belastung auf den \(n \) Leitungen.

Bei den hier betrachteten Linkssystemen hat jedes Koppelvielfach der Stufe \(1 \quad \bar{b}_1 \) Quellen und eine vorgeschriebene Belastung \(Y_1 \).

Damit ergibt sich die Anrufrate je freie Quelle für den abgehenden Externverkehr:
\[
\alpha_{eg} = \frac{k_{eg}/s_1}{1 - Y_1}
\] (IV.36)

Entsprechend ergibt sich für den Internverkehr:
\[
\alpha_1 = \frac{A_1/s_1}{1 - Y_1}
\] (IV.37)

Die gesamte Anrufrate je freie Quelle ist dann:
\[
\alpha_{ges} = \alpha_{eg} + \alpha_1
\] (IV.38)

Der ankommende Externverkehr wird stets von sehr zahlreichen Verkehrsquellen außerhalb des betrachteten Linkssystems erzeugt, weshalb immer Zufallsverkehr 1. Art angenommen werden kann.

5.5 Zufallsverkehr 1. Art (ZV 1)

5.5.1 Allgemeines

Es wird für die Betriebsart 1 zunächst der Fall betrachtet, daß die Verkehrsquellen des Linkssystems, die sowohl den abgehenden Externverkehr als auch den Internverkehr erzeugen, eine konstante, von momentanem Belegungszustand des Linkssystems unabhängige, Anrufrate haben (ZV 1). Der ankommende Externverkehr ist voraussetzungsgemäß ebenfalls ZV 1.

Es wird auf den \(k_{eg}/G \) bzw. \((k_{eg}/G)/G\) Zwischenleitungen und auf dem jeweils betrachteten Leitungsbündel hinter der Stufe \(s \) (bei Betriebsart 1 ist nur ein Leitungsbündel vorhanden) ein Typ der Wahrscheinlichkeitsverteilung vorgegeben. Ausgehend von den entsprechenden - vorgegebenen - Belastungen werden dann die einzelnen Wahrscheinlichkeitsverteilungen iterativ berechnet.

In Abschnitt 5.5.2 wird zunächst die Wahrscheinlichkeitsverteilung \(p(x) \) auf dem einen Leitungsbündel hinter der Stufe \(s \) berechnet. In Abschnitt 5.5.3 werden mit diesen Wahrscheinlichkeiten \(p(x) \) die Bündelblockierungen für die verschiedenen Verkehrstypen bestimmt.
Entsprechend werden ausgehend von der Wahrscheinlichkeitsverteilung \(w(x) \) auf den \(k_x \) Zwischenleitungen (Abschnitt 5.5.4) die Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- bzw. Zirkupolvielfachs hergeleitet (Abschnitt 5.5.5).

Für Linksysteme bei denen Zwischenblockierungen zu berücksichtigen sind, werden in Abschnitt 5.5.6 die Wahrscheinlichkeitsverteilung \(p_x(x) \) auf den \((g_x k_x) / 2\) Zwischenleitungen und in Abschnitt 5.5.7 die daraus resultierenden Zwischenblockierungen berechnet.

5.5.2 Die Wahrscheinlichkeitsverteilung \(p(x) \) auf den \(n_s \) Leitungen hinter der Stufe \(s \)

Wie bereits ausgeführt sind bei Betriebsart 1 alle Leitungen hinter der Stufe \(s \) zu einem Bündel mit \(n_s \) Leitungen zusammengefasst.

Für die Wahrscheinlichkeitsverteilung \(p(x) \) gilt entsprechend zu G1.(III.26):

\[
 p(x+2) = \frac{e_x A_{os}}{x + 2} p(x+1) + \frac{e_x A_{os}}{x + 2} p(x+1) + 2 \frac{1}{x+2} A_{os} p(x)
\]

Mit \(e_{os} A_{os} = e_x A_{os} + e_x A_{os} \) ergibt sich folgende Rekursionsformel:

\[
 p(x+2) = \frac{e_{os}}{x + 2} p(x+1) + 2 \frac{1}{x+2} A_{os} p(x)
\]

Mit der Randbedingung:

\[
 \sum_{x=0}^{n_s} p(x) = 1
\]

Die fiktiven Angebote \(e_{os} \) bzw. \(e_{os} \) und damit die Zustandswahrscheinlichkeiten \(p(x) \) (\(x = 0,1, \ldots, n_s \)) werden ausgehend von den gegebenen Belastungen \(Y_{eg}, Y_{ek} \) und \(Y_1 \) iterativ bestimmt. Es gelten folgende Beziehungen (vollkommen erreichbares Bündel, vgl. Kapitel III.2.2.2):

\[
 Y_e = Y_{eg} + Y_{ek} = e_{os} (1 - p(n_s)) \quad (IV.40)
\]

\[
 Y_1 = 2 A_{os} (1 - p(n_s) - p(n_s-1)) \quad (IV.41)
\]

Der Faktor 2 in G1.(IV.41) rührt davon her, daß jeder erfolgreiche Internruf 2 Leitungen des Leitungsbündels hinter der Stufe des belegt (siehe auch Erklärung zu G1.(IV.21) und (IV.22)).

\[
 p(n_s) + p(n_s-1) \quad \text{ist die Verlustwahrscheinlichkeit intern, bezogen auf das Internangebot eines vollkommen erreichbaren Bündels (abgehend tritt Verlust im Zustand } n_s \text{ auf, ankommend tritt Verlust im Zustand } n_s-1 \text{ auf, da bei Einfall eines Internrufes im Zustand } n_s-1 \text{ abgehend die letzte freie Leitung belegt wird; vgl. hierzu Abschnitt 5.5.5.3, G1.(IV.60)).}
\]

Mit \(Y_e \) nach G1.(IV.40) und \(Y_1 \) nach G1.(IV.41) kann \(Y_{ges} \) nach G1.(IV.1) und \(d_{ges} \) nach G1.(IV.3) berechnet werden.

Zu Beginn der Iteration werden Anfangswerte \(e_{os} \) und \(A_{os} \) für die fiktiven Angebote vorzugeben. Zur Berechnung dieser Anfangswerte werden die Verlustwahrscheinlichkeiten in G1(IV.40) bzw. (IV.41) gleich 0 gesetzt, damit ergibt sich:

\[
 Y_e = e_{os} \quad Y_1 = 2 A_{os}
\]

Damit wird:

\[
 e_{os} = e_{os} = Y_e \quad A_{os} = \frac{1}{2} Y_1 \quad (IV.42)
\]

Mit Hilfe der "regula falsi" werden nun solange verbesserte Werte \(e_{os} \) und \(A_{os} \) (\(\mu \)-ter Iterationsschritt) berechnet, bis

\[
 | Y_{ges,berechnet} - Y_{ges,gegeben} | < \delta_1
\]

und

\[
 | d_{ges,berechnet} - d_{ges,gegeben} | < \delta_2
\]

erfüllt ist, wobei \(\delta_1 \) und \(\delta_2 \) beliebig vorgegebene, feste Schranken sind (z.B. \(\delta_1 = \delta_2 = 10^{-6} \)).

Sind diese Bedingungen erfüllt, dann sind die Zustandswahrscheinlichkeiten \(p(x) \) bestimmt. Mit diesen Zustandswahrscheinlichkeiten können die Bündelblockierungen berechnet werden.

5.5.3 Die Bündelblockierungen

5.5.3.1 Extern abgehend

Die Bündelblockierung extern abgehend, bezogen auf das extern abgehende Angebot, ergibt sich zu:

\[
 [m]_{eg} = \sum_{x=m}^{n_s} p(x) \cdot G(x) \quad (IV.44)
\]

\(m \) ist die mittlere Prüfbarkeit des Leitungsbündels hinter der Stufe \(s \) (vgl. Kapitel III.2.2.2). Da bei der Betriebsart 1 nur ein Leitungsbündel vorhanden ist, wird die Größe \(m \) nicht weiter indiziert. Die mittlere Prüfbarkeit ist im allgemeinen nicht ganzzahlig, deshalb wird \([m]_{eg} \) durch lineare Interpolation zwischen den Werten \(m_u \) und \(m_o \) berechnet (vgl. Kapitel III.2.2.2).
5.5.3.2 Extern ankommand

An dieser Stelle sei noch einmal daran erinnert, dass für den ankommanden Externverkehr Punkt-Bündel-Markierung vom Zielkoppelvielfach der Stufe 1 bis zum Leitungsbündel hinter der Stufe s vorausgesetzt wird. D. h. für die Bündelblockierung des ankommanden Externverkehrs gilt entsprechend zu Gl.(IV.44):

\[[m]_{ek} = \sum_{x=m}^{n_1} p(x) \cdot G(x) \] \hspace{1cm} (IV.45)

5.5.3.3 Intern

Ein abgehender Internruf wird gleich wie ein abgehender Externruf behandelt. Deshalb gilt für die Bündelblockierung des abgehenden Internverkehrs entsprechend zu Gl.(IV.44):

\[[m]_{ig} = \sum_{x=m}^{n_1} p(x) \cdot G(x) \] \hspace{1cm} (IV.46)

Zur Berechnung der Bündelblockierung des ankommanden Internverkehrs wird zunächst ein Zustand \([x] \) des Leitungsbündels betrachtet. Fällt ein Internruf im Zustand \([x] \) des Leitungsbündels ein, so wird dieser Ruf zunächst beim abgehenden Verbindungsauflauf die \((x+1) \)-te Leitung, der Ruf wird also im Zustand \([x] \) des Leitungsbündels nicht blockiert (Durchlasswahrscheinlichkeit \(p(x) \)). Bündelblockierung tritt in ankommender Richtung dann auf, wenn der ankommende Teil der Internverbindung im Zustand \([x+1] \) des Leitungsbündels nicht durchschaltbar ist (Sperrwahrscheinlichkeit \(G(x+1) \)).

Damit ergibt sich für die Bündelblockierung des ankommanden Internverkehrs (vgl./5/):

\[[m]_{ik} = \sum_{x=m-1}^{n_1-1} p(x) \cdot G(x+1) \] \hspace{1cm} (IV.47)

Aus Gl.(IV.46) und (IV.47) ergibt sich die Bündelblockierung des gesamten Internverkehrs, bezogen auf das Internangebot:

\[[m]_1 = [m]_{ig} + [m]_{ik} \] \hspace{1cm} (IV.48)

5.5.4 Die Wahrscheinlichkeitsverteilung \(w(x) \) auf den \(k_1 \) Zwischenlieitungen eines Koppelvielfachs der Stufe 1

Bei der Berechnung von \(w(x) \) muss ein Koppelvielach der Stufe 1 mit seinen \(k_1 \) Ausgängen und den verschiedenen Verkehrsarten betrachtet werden. Wie bereits in Abschnitt 5.3 gezeigt, muss hier zwischen systeminternem und kv-internem Verkehr unterschieden werden. (Ein kv-interner Ruf belegt von den \(k_1 \) Leitungen gleichzeitig zwei.)

In Bild 14 sind die verschiedenen Verkehrsarten mit ihren Belastungen und den fiktiven Angeboten dargestellt.

![Bild 14: Ein Koppelvielfach der Stufe 1 mit seinen verschiedenen Verkehrstypen.](image)

In Bild 14 ist:

1: abgehender Externverkehr mit dem fiktiven Angebot \(e_{g1}^{A01} \),
2: ankommander Externverkehr mit dem fiktiven Angebot \(e_{k1}^{A01} \),
3: systeminterner abgehender Verkehr mit dem fiktiven Angebot \(s_{g1}^{A01} \); dieser Verkehr wird von den "endenlich vielen" Quellen des betrachteten Koppelvielfachs der Stufe 1 angeboten, das Ziel dieses Verkehrs ist ein anderes Koppelvielfach der Stufe 1,
5.5.5 Die Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprung- bzw. Zielkoppelpvielfachs

Mit den in Abschnitt 5.5.4 berechneten Zustandswahrscheinlichkeiten \(w(x) \) werden nun für die Verkehrstypen in abgebender Richtung die Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- koppelpvielfachs (Eingangsblockierung) bzw. für die Verkehrstypen in ankommender Richtung die Verlustwahrscheinlichkeiten infolge von Blockierung des Zielkoppelpvielfachs bestimmt.

5.5.5.1 Extern abgehend

Der "extern abgehende Verlust" infolge von Blockierung des Ursprungs- koppelpvielfachs, bezogen auf das Angebot des abgehenden Externerverkehrs, ist:

\[
e_{g} b_{1} = w(k_{1})
\]

(IV.55)

5.5.5.2 Extern ankommend

Entsprechend der Voraussetzung der Punkt-Bündel-Markierung vom Zielkoppelpvielfach zum Leitungsbündel hinter der Stufe \(s \) gilt für die Verlustwahrscheinlichkeit infolge von Blockierung des Zielkoppelpvielfachs des ankommenden Externverkehrs (vgl. Gl. (IV.55)):

\[
e_{k} b_{1} = w(k_{1})
\]

(IV.56)

5.5.5.3 Intern

Beim \(k_{v} \)-internen bzw. systeminternen abgehenden Verkehr tritt Verlust infolge von Blockierung des Ursprungs- koppelpvielfachs im Zustand \(\{ k_{1} \} \) auf, d.h. entsprechend zu Gl. (IV.55) gilt:

\[
k_{g} b_{1} = e_{g} b_{1} = w(k_{1})
\]

(IV.57)

Für den ankommenden \(k_{v} \)-internen bzw. systeminternen Verkehr gilt ebenfalls die Voraussetzung der Punkt- Bündel-Markierung vom Zielkoppelpvielfach zum Leitungsbündel hinter der Stufe \(s \).

Da beim systeminternen Verkehr das Ursprungs- koppelpvielfach nicht gleich dem Zielkoppelpvielfach ist, tritt beim ankommenden systeminternen Verkehr Verlust infolge von Blockierung des Zielkoppelpvielfachs ebenfalls im Zustand \(\{ k_{1} \} \) dieses Koppelpvielfachs auf.
Damit gilt:
\[sk^1 = w(k_1) \] \hfill (IV.58)

(Systeminterner Verlust im abgehenden bzw. in ankommender Richtung treten also in der Stufe 1 in verschiedenen Koppelvielfachen auf, damit sind die beiden entsprechenden Verlustwahrscheinlichkeiten voneinander unabhängig.)

Beim ankommenden kv-internalen Verkehr ist das Ursprungskoppelvielfach gleich dem Zielkoppelvielfach, d.h., beim ankommenden kv-internalen Verkehr tritt Verlust infolge von Blockierung des Zielkoppelvielfachs bei Einfall eines abgehenden Rufes im Zustand \(k_1 \) auf; denn dann belegt dieser Ruf abgehend die letzte freie Leitung und geht damit ankommend verloren. Es gilt:
\[kk^1 = w(k_1) \] \hfill (IV.59)

In der Beziehung (IV.59) für \(kk^1 \) ist also enthalten, daß in abgehender Richtung keine Blockierung des Ursprungskoppelvielfachs auftritt.

Damit ergibt sich der kv-internalen Verlust infolge von Blockierung des Ursprungs- (= Ziel-) Koppelvielfachs (Verlust in abgehender oder in ankommender Richtung), bezogen auf das kv-internalen Angebot:
\[\frac{kb^1}{k^1} = \frac{kg^1}{k^1} + kk^1 = w(k_1) + w(k_1-1) \] \hfill (IV.60)

(\(kg^1 \) und \(kk^1 \) schließen sich gegenseitig aus und sind deshalb additiv.)

In den Gleichungen (IV.13), (IV.14), (IV.16) und (IV.17) zur Berechnung der verschiedenen Teilverlustwahrscheinlichkeiten des internverkehrs treten noch die relativen Anteile \(kg^1k'/k^1 \), \(k^1k'/k^1 \), \(sk^1k'(1 - sg^1) \) und \(sk^1k'(1 - sk^1) \) auf. Diese Größen werden im folgenden berechnet.

Es ist \(kg^1k'/k^1 \) der relative Anteil der kv-internen Rufe, die im Ursprungskoppelvielfach (in abgehender Richtung) eine freie Zwischenleitung finden.

Die Zahl der kv-internal angebotenen Rufe je Zeiteinheit (Erwartungswert) ist \(k^1 \). Infolge von Blockierung des Ursprungskoppelvielfachs gehen davon in abgehender Richtung \(k^1w(k_1) \) Rufe verloren bzw. \(k^1 - k^1w(k_1) \) Rufe gehen nicht verloren.

\[kg^1k'(1 - sg^1) \] \hfill (IV.61)

Mit \(kg^1 = w(k_1) \) ergibt sich:
\[kg^1k'(1 - sg^1) \] \hfill (IV.62)

Entsprechend kann bei ZV 1 gezeigt werden:
\[k^1k'(1 - sg^1) \] \hfill (IV.63)
\[sk^1k'(1 - sg^1) \] \hfill (IV.64)
\[sk^1k'(1 - sk^1) \] \hfill (IV.65)

5.5.6 Die Wahrscheinlichkeitstheorie der \(p_r(x) \) auf den \((g_r,k_r)/G \) Zwischenleitungen zwischen der Stufe \(r \) und der Stufe \(r+1 \) des Linkssystems

Bild 15: Das Zwischenleitungskabel zwischen der Stufe \(r \) und der Stufe \(r+1 \) mit seinen verschiedenen Verkehrstypen.

Die Belastung des betrachteten Zwischenleitungskabels mit \(n_r = (g_r,k_r)/G \) Leitungen setzt sich aus folgenden Teilen zusammen:

- Belastung des abgehenden Externverkehrs \(y_r \)
- Belastung des ankommenden Externverkehrs \(n_r \)
- Belastung des nicht-blockinternen Verkehrs \(n_g \)

\[y_r = \frac{y_g}{G} \]
- Belastung des ankommenden Externeverkehrs:
 \[b_{Y,R} = \frac{a_{E,R}}{D_{R}} \] (vgl. Gl. (IV.7))

- Belastung des blockinternen Verkehrs:
 \[b_{Y,R} = \frac{a_{B,R} + \nu_{R}}{D_{R}} \] (vgl. Gl. (IV.8))

Damit ergibt sich mit den entsprechenden fiktiven Angeboten
\[e_{AO,R}, b_{AO,R}, a_{AO,R}, b_{AO,R}, e_{AO,R}, b_{AO,R}, a_{AO,R}, b_{AO,R} \]:

\[
(x+2) \cdot p_{R}(x+2) = (e_{AO,R} + e_{AO,R} + b_{AO,R} + b_{AO,R}) \cdot p_{R}(x+1) + 2 \cdot b_{AO,R} \cdot p_{R}(x)
\]
oder

\[
p_{R}(x+2) = \frac{\tilde{a}_{R}}{x+2} \cdot p_{R}(x+1) + 2 \cdot b_{AO,R} \cdot p_{R}(x) \quad (IV.66)
\]
mit der Randbedingung:

\[
\sum_{x=0}^{nR} p_{R}(x) = 1
\]
Hierbei ist:

\[\tilde{a}_{R} = e_{AO,R} + e_{AO,R} + b_{AO,R} \]

Die Berechnung von \(p_{R}(x) \) erfolgt analog zur Berechnung von \(p(x) \) nach Abschnitt 5.5.2. Es gilt (entsprechend zu Gl. (IV.40) und (IV.41)):

\[
\begin{align*}
 e_{AO,R} + e_{AO,R} + b_{AO,R} + b_{AO,R} &= \tilde{a}_{R} \cdot (1 - p_{R}(n_{R})) \\
 b_{AO,R} &= 2 \cdot b_{AO,R} \cdot (1 - p_{R}(n_{R}) - p_{R}(n_{R}-1))
\end{align*}
\] (IV.67)

5.5.7 Die Zwischenblockierungen

Mit den nach Abschnitt 5.5.6 berechneten Zustandswahrscheinlichkeiten \(p_{R}(x) \) können die Zwischenblockierungen einfach berechnet werden. Es gilt entsprechend zur Berechnung der Bündelblockierungen (vgl. Abschnitt 5.5.5):

- Die Zwischenblockierung des abgehenden bzw. ankommenden Externeverkehrs:
 \[[m_{1R}]_{AO} = [m_{1R}]_{AO} = \sum_{x=m_{AO}}^{n_{R}} p_{R}(x) \cdot G_{R}(x) \] (IV.68)

- Die Zwischenblockierungen des blockinternen Verkehrs:
 \[
 \begin{align*}
 [m_{1R}]_{BG} &= \sum_{x=m_{BG}}^{n_{R}} p_{R}(x) \cdot G_{R}(x) \\
 &\quad (IV.69)
 \end{align*}
\]

In ankommender Richtung (vgl. Gl. (IV.47)):

\[[m_{1R}]_{BK} = \sum_{x=m_{BK}}^{n_{R}} p_{R}(x) \cdot G_{R}(x+1) \] (IV.70)

Mit Gl. (IV.69) und (IV.70) ergibt sich die gesamte Zwischenblockierung des blockinternen Verkehrs:

\[[m_{1R}]_{B} = [m_{1R}]_{BG} + [m_{1R}]_{BK} \] (IV.71)

- Die Zwischenblockierungen des nicht-blockinternen Verkehrs:
 Der nicht-blockinterne Verkehr belegt im betrachteten Zwischenleitungs bundel nur eine Leitung, damit gilt für die Zwischenblockierungen in abgehender bzw. ankommender Richtung:

\[[m_{1R}]_{BG} = [m_{1R}]_{BG} = \sum_{x=m_{BG}}^{n_{R}} p_{R}(x) \cdot G_{R}(x) \] (IV.72)

5.6 Zufallsverkehr 2. Art (ZV 2)

5.6.1 Allgemeines

Es wird nun der Fall betrachtet, daß die Verkehrssequenzen des Link- systems für den abgehenden Externeverkehr und für den Internverkehr eine vom momentanen Belegungszustand abhängige Anrufrate haben (ZV 2). Für den Anrufprozeß des ankommenden Externeverkehrs wird jedoch weiterhin Zufallsverkehr 1. Art zugrunde gelegt (vgl. Abschnitt 3.2).

In Abschnitt 5.6.2 werden zunächst einige grundsätzliche Bemerkungen zur Definition des Angebots und damit auch der Verlustwahr- scheinlichkeit bei Systemen mit Internverkehr und ZV 2 gemacht.

In Abschnitt 5.6.4 wird die Wahrscheinlichkeitsverteilung \(p(x) \) auf dem einen Leitungsbündel (Betriebsart 1) hinter der Stufe s des Linksystems bei vorgegebenem Verteilungstyp, ausgehend von der gegebenen Belastung, iterativ bestimmt. Die daraus resultierenden Bündelblockierungen werden in Abschnitt 5.6.5 angegeben.
In Abschnitt 5.6.6 wird die Wahrscheinlichkeitsverteilung $w(x)$ hergeleitet. Die Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- bzw. Zielkoppelvielfachs werden für die beiden Wegesuchalgorithmen in Abschnitt 5.6.7 berechnet.

In den Abschnitten 5.6.8 bzw. 5.6.9 werden die Wahrscheinlichkeitsverteilung $p_{v}(x)$ auf dem Zwischenleitungsbündel zwischen der Stufe v und der Stufe $v+1$ bzw. die daraus resultierenden Zwischenblockierungen bestimmt.

5.6.2 Grundsätzliche Bemerkungen zur Definition des Angebots bei Systemen mit ZV 2 und Internverkehr

Bei der Betrachtung von Systemen mit Internverkehr und endlicher Anzahl von Verkehrsquellen (ZV 2) sind verschiedene Definitionen des Angebots möglich.

Bei ZV 1 wird für den Anrufprozess eine konstante, vom momentanen Belegungszustand des Systems unabhängige Anrufrate zugrunde gelegt. Diese konstante Anrufrate kann man sich durch eine endlich große Zahl von Verkehrsquellen ($q=\infty$, $\alpha=0$, $\sigma=q=\text{konst.}$) erzeugen denken. D.h. die Wahrscheinlichkeit, daß bei ZV 1 eine bestimmte Verkehrsquelle (von endlich vielen) belegt ist, ist gleich Null.

Bei ZV 2 wird eine vom momentanen Belegungszustand des Systems abhängige Anrufrate zugrunde gelegt, dies entspricht einer endlichen Zahl von Verkehrsquellen ($q<\infty$). D.h. die Wahrscheinlichkeit, daß bei ZV 2 eine bestimmte Verkehrsquelle (Teilnehmer) belegt ist, ist endlich groß.

Damit kann ein dem Linksverkehr Angebot der ZV 2 auf verschiedene Arten Verlust erleiden:

1. Verlust durch Blockierung des Linksverkehrs B_{Link}, d.h. der Ruf findet keinen freien Weg zum Zielkoppelvielfach.
2. Verlust infolge von "Teilnehmerbesetzt" B_{Tin}, d.h. der gerufene Teilnehmer (die "gerufene" Verkehrsquelle) am Zielkoppelvielfach ist bereits besetzt (bei ZV 1: $B_{\text{Tin}} = 0$).

Die Zahlenwerte dieser Verlustwahrscheinlichkeiten B_{Link} bzw. B_{Tin} sind in den meisten Fällen um eine oder sogar zwei Zehnerpotenzen verschieden. Übliche Werte für die Teilnehmerbesetzwahrscheinlichkeit sind $B_{\text{Tin}} = 10\% - 20\%$.

Das Linksverkehr selbst wird aber üblicherweise für $B_{\text{Link}} = 1\% - 1\%$ dimensioniert.

Es ist deshalb üblich und zweckmäßig bei der Verlustberechnung von Linksverkehrs B_{Tin} auszuschließen, d.h. es werden nur die Verlustrufe je Zeiteinheit $c_{\text{V,Link}}$ betrachtet, die keinen freien Weg zum Zielkoppelvielfach gefunden haben.

Das Angebot bzw. die Anzahl der angebotenen Rufe je Zeiteinheit kann nun auf zwei verschiedene Arten bestimmt werden; es ergeben sich damit zwei Definitionen für das Angebot:

1. Alle angebotenen Rufe c_{A1} je Zeiteinheit tragen zum Angebot bei; das Schicksal des Rufes (erfolgreich, Verlust infolge von Blockierung des Linksverkehrs oder Verlust infolge von "Teilnehmerbesetzt") ist ohne Bedeutung.

2. Nur jene angebotenen Rufe c_{A2} je Zeiteinheit tragen zum Angebot bei, die nicht infolge von "Teilnehmerbesetzt" abgewiesen werden.

Wendet man die Verlustrate $c_{\text{V,Link}}$ auf c_{A1} bezogen, so ist der Quotient $c_{\text{V,Link}}/c_{\text{A1}}$ der Prozentsatz der angebotenen Rufe, der durch Blockierung des Linksverkehrs verloren geht. Die Anzahl der erfolgreichen Rufe c_{L} je Zeiteinheit ist dann aber nicht gleich der Differenz $c_{\text{A1}} - c_{\text{V,Link}}$, da in c_{A1} nicht erfolgreiche Rufe infolge von "Teilnehmerbesetzt" enthalten sind. Es ist also:

$$c_{\text{L}} \neq c_{\text{A1}} - c_{\text{V,Link}}$$

und damit ist:

$$Y \neq 2\cdot A_1\left(1 - \frac{c_{\text{V,Link}}}{c_{\text{A1}}}
ight)$$

(bei Internverkehr gilt allgemein $Y=2A(1-B)$, siehe Abschnitt 5.5.2.)

Werden dagegen die Verlustrate $c_{\text{V,Link}}$ auf c_{A2} bezogen, so ist:

$$B_{\text{Link}} = \frac{c_{\text{V,Link}}}{c_{\text{A2}}}$$

die Verlustrate des Linksverkehrs und es gilt:

$$c_{\text{L}} = c_{\text{A2}} - c_{\text{V,Link}}$$

bzw.

$$Y = 2\cdot A_2\left(1 - B_{\text{Link}}\right)$$

Im folgenden wird immer die Angebotsdefinition 2 angewandt bei der die Beziehung $Y=2A(1-B)$ erfüllt ist. D.h. die Rufate, die durch "Teilnehmerbesetzt" verloren gehen und nicht als eigentliche Verlustrate gewertet werden, werden auch bei der Berechnung des Angebots nicht betrachtet.
5.6.3 Die Wegesuchsalgorithmen (für Internverkehr)

5.6.3.1 Der Wegesuchsalgorithmus 1

Bei diesem Wegesuchsalgorithmus wird davon ausgegangen, daß sofort nach Eintreffen eines Internrufes das Zielkoppelvielfach bzw. der gerufene Teilnehmer ermittelt wird. Ist der gerufene Teilnehmer frei, dann wird versucht einen freien Weg durch das Linkssystem vom Rufenden zum gerufenen Teilnehmer zu finden. Ist der gerufene Teilnehmer belegt, dann wird der Ruf weder als Verlustruf noch als Angebotsruf gewertet (vgl. Angebotsdefinition, Abschnitt 5.6.2).

Zur Erläuterung dieses Sachverhalts bzw. zur deuterlichen Unterscheidung der verschiedenen Wegesuchsalgorithmen wird im folgenden der Wegesuchsalgorithmus 1 stichwortartig anhand des Verbindungsaufbaus bei Eintreffen eines Internrufes beschrieben.

Zur weiteren Charakterisierung dient eine Mengendarstellung der verschiedenen Rufe je Zeiteinheit.

Der Verbindungsaufbau (Internverbindung):

- Ruf fällt ein; die Gesamtzahl aller angebotenen Rufe je Zeiteinheit ist \(c_{Ages} \).
- Das Zielkoppelvielfach bzw. der gerufene Teilnehmer wird ermittelt.
- Gerufener Teilnehmer frei?
 - ja: Der Ruf wird als wirksamer angebotener Ruf gewertet. Die Zahl der wirksam angebotenen Rufe je Zeiteinheit ist \(c_A \).
 - nein: Der Ruf wird nicht als wirksamer Ruf gewertet (er trägt nicht zum "echten" Angebot bei).
- War der gerufene Teilnehmer frei, dann Wegesuche abgehend vom Ursprungs- und dem Leitungs- bündel hinter der Stufe \(s \) des Linkssystems.
- Wegesuche abgehend erfolgreich?
 - nein: Ruf erledigt Verlust in abgehender Richtung; die Zahl der abgehenden Verlustrufe je Zeiteinheit ist \(e_{CV} \).
 - ja: Wegesuche ankommend vom Zielkoppelvielfach zum Leitungs- bündel hinter der Stufe \(s \).
- Wegesuche ankommend erfolgreich?
 - nein: Ruf erledigt Verlust in ankommender Richtung; die Zahl der ankommenden Verlustrufe je Zeiteinheit ist \(k_{CV} \).
 - ja: Die Internverbindung ist aufgebaut; die Zahl der erfolgreichen Rufe je Zeiteinheit ist \(c_L \).

Die Differenz \(c_{Ages} - c_A \) stellt die Menge jener angebotenen Rufe dar, bei der der gerufene Teilnehmer belegt ist. Die Menge der erfolgreichen Rufe \(c_L \) ergibt sich aus der Differenz der Menge der wirksam angebotenen Rufe \(c_A \) und den beiden voneinander unabhängigen Unter mengen der verlorenen Rufe \(e_{CV} \) und \(k_{CV} \). Es ist:

\[
 c_L = c_A - (e_{CV} + k_{CV})
\]

Die Verlustrahrscheinlichkeit ergibt sich damit zu:

- abgehend:
 \[
 e_b = e_{CV} \frac{c_A}{c_A}
 \]
- ankommend:
 \[
 k_b = k_{CV} \frac{c_A}{c_A}
 \]
- gesamt:
 \[
 b = e_b + k_b = e_{CV} \frac{c_A}{c_A} + k_{CV} \frac{c_A}{c_A}
 \]

Für die Verlustberechnung in abgehender und in ankommender Richtung liegt also dasselbe Angebot zugrunde.

5.6.3.2 Der Wegesuchsalgorithmus 2

Bei diesem Wegesuchsalgorithmus wird zunächst nach Eintreffen eines Internrufes ein Verbindungsaufbau in abgehender Richtung versucht, d.h. eine abgehende Wegesuche vom Ursprungs- und der ankommender Richtung ist dabei noch nicht bekannt, d.h. die abgehende Wegesuche wird unabhängig vom Belegungszustand des gerufenen Teilnehmers durchgeführt.
Nachdem der Verbindungsaufbau in abgebender Richtung erfolg-
reich war, wird das Zielkoppelierviel fach bzw. der gerufene Teil-
nehmer ermittelt. Ist der gerufene Teilnehmer belegt, dann
verläßt der Ruf ohne weitere Auswertung das System, die in ab-
gehenden Richtung aufgebaute Verbindung wird wieder aufgelöst.
Der Ruf wird also nicht als an kommend angebotener sondern nur
als abgebend angebotener Internruf gewertet (vgl. Angebotsde-
finition in Abschnitt 5.6.2).

Ist der gerufene Teilnehmer frei, dann wird in an kom mender
Richtung vom Zielkoppelierviel fach zum Leitungsbündel hinter der
Stufe s eine Wegesuche durchgeführt.

Entsprechend wie beim Wegesuchalgorithmus 1 wird auch beim Wege-
suchalgorithmus 2 also nur dann eine Verbindung durch geschaltet,
wenne der Ruf nicht durch Blockierung des Linksystems verloren
ging und wenn der gerufene Teilnehmer frei ist. Bei derselben
Belastung des Linksystems und derselben Aufteilung von Intern-
und Externverkehr müssen also die Wahrscheinlichkeitsvertei-
lungen $w(x), p(x)$ und $p_r(x)$ bei beiden Wegesuchalgorithmen iden-
tisch sein, da ein durch einen Internruf verursachter Übergang
vom Zustand $\{x\}$ zum Zustand $\{x+1\}$ mit der Wahrscheinlichkeit
auftritt, mit der ein Internruf ein fällt ($W_1(i, 1-x)$) und der ge-
ru fene Teilnehmer frei ist (Wahrscheinlichkeitsverteilung eines
vollkommen erreichbaren Bündels). Diese Wahrscheinlichkeit ist
für beide Wegesuchalgorithmen gleich. Der Unterschied zwischen
den beiden Wegesuchalgorithmen besteht also nur in der unter-
schiedlichen Verlust- bzw. Angebotsberechnung bei gleicher
Wahrscheinlichkeitsverteilung $w(x)$ bzw. $p(x)$ bzw. $p_r(x)$ (Be-
rechung von $p(x), w(x)$ und $p_r(x)$ siehe Abschnitt 5.6.4, 5.6.6
und 5.6.8).

Den meisten Teilnehmerwahl-Kop pelanordnungen moder ner Vermittlungs-
systeme liegt dieses Wegesuchprinzip zugrunde. Dort wird nach Einfall
eines Rufes eine Verbindung in abgebender Richtung aufgebaut,
dann wählt der rufende Teilnehmer die Rufnummer des gewünschten
Teilnehmers in ein zentrales Register. Dieses Register wertet
die Rufnummer aus und veran läßt die Markierung des gerufenen
Teilnehmers. Nur wenn dieser Teilnehmer frei ist, wird in an-
kommender Richtung ein Verbindungsaufbau versucht (vgl. Ab-
schnitt 3.1).

Wird für den Anrufprozeß des Internverkehrs ZV 1 zugrunde ge-
legt, dann sind rechnerisch beide Wegesuchalgorithmen identisch,
da bei ZV 1 die Wahrscheinlichkeit, daß eine bestimmte Verkehrs-
quelle belegt ist, gleich Null ist.

Im folgenden wird der Wegesuchalgorithmus 2 stichwortartig an-
hand des Verbindungsaufbaus bei Ein flang eines Internrufes be-
schrieben:

- Ruf fällt ein; die Gesamtzahl aller angebotenen Internrufe je
Zeiteinheit ist c_{Ages}. c_{Ages} ist in diesem Fall gleich der Zahl
der wirksam abgehend angebotenen Ruf je Zeiteinheit g^A.

- Wegesuche in abgebender Richtung vom Ursprungskoppelierviel-
fach zum Leitungsbündel hinter der Stufe s.

- Wegesuche in abgebender Richtung erfolgreich?
 - nein : Ruf erledigt abgebend Verlust; die Zahl der Verlust-
 rufe in abgebender Richtung je Zeiteinheit ist g^V.
 - ja : Zielkoppelierviel fach bzw. gerufener Teilnehmer wird er-
 mittelt.

- Gerufener Teilnehmer frei?
 - ja : Der Ruf wird als wirksamer an kom mend angebotener Ruf
 gewertet; die Zahl der wirksam an kom mend angebotenen
 Ruf je Zeiteinheit ist k_A^V.
 - nein : Der Ruf wird nicht als wirksam an kom mend angebo-
 tenen Ruf gewertet; die bereits bestehende Verbindung in
 abgebender Richtung wird aufgelöst.

- War der gerufene Teilnehmer frei, dann Wegesuche in an kom mender
 Richtung vom Zielkoppelierviel fach zum Leitungsbündel hinter der
 Stufe s.

- Wegesuche in an kom mender Richtung erfolgreich?
 - nein : Ruf erledigt an kom mend Verlust; die Zahl der Verlast-
 rufe in an kom mendem Richtung je Zeiteinheit ist k_V.
 - ja : Die Internverbindung ist aufgebaut; die Zahl der er-
 folgreichen Ruf je Zeiteinheit ist c_L.

Werkenderstellung:
Die Zahl der erfolgreichen Rufe \(c_L \) ergibt sich aus der Differenz der Menge der ankommend angebotenen Rufe und der Menge der Verlustrufe in ankommender Richtung:

\[
c_L = k^A - k^V
\] \hspace{1cm} (IV.74)

Die Angebots- bzw. Verlustberechnung geht bei diesem Wegesuch-algorithmus von der Angebotsdefinition nach Abschnitt 5.6.2 aus; d.h. die Rufe bei denen der gerufene Teilnehmer belegt ist, werden nicht gewertet und die Beziehung \(Y=2A(1-B) \) soll erfüllt sein (Faktor 2 wegen der Doppelbelegung beim Internverkehr).

\(k^A \) ist die Zahl der Rufe, die dem Linksysten in ankommender Richtung unter Berücksichtigung dessen, daß der gerufene Teilnehmer frei ist, angeboten werden. Hinzu kommt die Zahl der Verlustrufe in abgehender Richtung \(g^V \). Da diese Rufe als Verlustrufe gewertet werden, müssen sie natürlich auch als Angebotsrufe gewertet werden.

Die Zahl der insgesamt wirksam angebotenen Rufe je Zeiteinheit ergibt sich zu:

\[
c_A = g^V + k^A
\] \hspace{1cm} (IV.75)

Allgemein ergibt sich die Zahl der erfolgreichen Rufe \(c_L \) aus der Differenz der Zahl der wirksam angebotenen Rufe \(c_A \) und der Zahl der insgesamt verloren gegangen Rufe \(c_V \). Es ist (vgl. Gl.(IV.74)):

\[
c_L = c_A - c_V = g^C + k^A - (g^C + k^V) = k^A - k^V
\] \hspace{1cm} (IV.76)

Damit wird die Verlustwahrscheinlichkeit:

\[
b = \frac{g^C + k^C}{k^A} = \frac{g^C}{g^C + k^A}
\] \hspace{1cm} (IV.77)

Daraus ergibt sich der Anteil der Verlustwahrscheinlichkeit in abgehender Richtung:

\[
b_g = \frac{g^C}{g^C + k^A}
\] \hspace{1cm} (IV.78)

und der Anteil der Verlustwahrscheinlichkeit in ankommender Richtung:

\[
b_k = \frac{k^C}{g^C + k^A}
\] \hspace{1cm} (IV.79)

\(b_g \) und \(b_k \) sind die Verlustwahrscheinlichkeitsanteile, die in ihrer Summe gerade die gesamte Verlustwahrscheinlichkeit \(b \) ergeben:

\[
b = b_g + b_k
\]

Die Verlustwahrscheinlichkeit in abgehender Richtung für sich betrachtet ergibt sich zu:

\[
b_g = \frac{g^C}{g^C + k^A}
\]

und die Verlustwahrscheinlichkeit in ankommender Richtung ist:

\[
b_k = \frac{k^C}{k^A}
\]

Für die weiteren Betrachtungen interessieren aber nur die auf dasselbe Angebot bezogenen Verlustwahrscheinlichkeitsanteile nach Gl.(IV.78) und (IV.79).

Mit \(b \) nach Gl.(IV.77), \(Y/2 = c_L' h, A = (g^C + k^A) h \) und der mittleren Belegungsdauer \(h=1 \) (normiert) ergibt sich aus Gl.(IV.76):

\[
Y = 2A(1 - b)
\]

5.6.4 Die Wahrscheinlichkeitsverteilung \(p(x) \) auf den \(n_x \) Leitungen des Leitungsbündels hinter der Stufe des Linksystems (vollkommen erreichbares Bündel als Modell)

Bei beiden Wegesuch-algorithmen wird davon ausgegangen, daß dann und nur dann ein Internruf erfolgreich ist, wenn der Ruf einen freien Weg im Linksystem gefunden hat und wenn der gerufene Teilnehmer frei ist (vgl. Abschnitt 5.6.3).

Entsprechend ist ein ankommender Externruf ebenfalls nur dann erfolgreich, wenn der gerufene Teilnehmer frei ist und wenn ein freier Weg im Linksystem vorhanden ist.
Für die Berechnung von \(p(x) \) muß die Anzahl der Verkehrsquellen \(Q \), die für das eine Leitungsbündel hinter der Stufe \(s \) (Betriebsart 1) wirksam ist, betrachtet werden.

Bei \(e_s \) Koppelvielfachen in der Stufe 1 und \(i_s \) Quellen je Koppelvielfach ergibt sich für das Leitungsbündel:

\[
Q = i_s \cdot e_s
\]

(IV.80)
d.h. die Gesamtheit aller Quellen erzeugt Verkehr, der diesem Leitungsbündel angeboten wird.

Damit ergibt sich (vgl. Kapitel III.3.2, Gl.(III.39)):

\[
(x+2) \cdot p(x+2) = e_s \cdot \alpha \cdot (Q-(x+1)) \cdot p(x+1) + \frac{e_s \cdot \alpha}{Q} \cdot p(x+1)
\]

(IV.81)

(II)

\[
+ 2 \cdot i_s \cdot (Q-x) \cdot p(x) \cdot \frac{Q-(x+1)}{Q}
\]

(III)

Zu (I): Übergang \(\{x+1\} \rightarrow \{x+2\} \), bedingt durch einen abgehenden Externruf. Im Zustand \((x+1) \) sind \((Q-(x+1)) \) Quellen frei, damit ist die fiktive Anrufrate \(e_s \cdot \alpha \cdot (Q-(x+1)) \).

Zu (II): Übergang \(\{x+1\} \rightarrow \{x+2\} \), bedingt durch einen ankommenden Externruf. Das fiktive Angebot ist unabhängig von Belegungszustand \(e_s \cdot \alpha \). Der Übergang findet aber nur statt, wenn der gerufene Teilnehmer frei ist. Insgesamt sind \(Q \) Teilnehmer (Quellen) vorhanden. Im Zustand \((x+1) \) sind hiervon \((Q-(x+1)) \) Teilnehmer frei, d.h. mit der Wahrscheinlichkeit \((Q-(x+1))/Q \) ist der gerufene Teilnehmer einer von den freien Teilnehmern.

Zu (III): Übergang \(\{x\} \rightarrow \{x+2\} \), bedingt durch den Einfall eines Internrufes im Zustand \(x \). Die fiktive Anrufrate ist dann \(i_s \cdot (Q-x) \). Der Übergang findet aber bei einem ankommenden Externverkehr nur dann statt, wenn der gerufene Teilnehmer frei ist. Trifft der Internruf im Zustand \(x \) ein, dann belegt dieser Ruf abhängig die \((x+1) \)-te Quelle, d.h. es sind dann noch \(Q-(x+1) \) Quellen frei. Mit der Wahrscheinlichkeit \((Q-(x+1))/Q \) ist damit der gerufene Teilnehmer einer von den freien Teilnehmern.

(Zu dem Faktor 2 in Term (III) vgl. Kapitel III.3.3).
Die Berechnung der extern ankommen Verlustwahrscheinlichkeit erfolgt ausgehend von den extern ankommen Verlustrufen \(e_k^{\text{ex}}\) und Angebotsrufen \(e_k^{\text{in}}\) je Zeiteinheit.

Extern ankommende Verlustrufe treten im Zustand \(\{n_s\}\) auf. Es werden aber nur die Rufe berücksichtigt, bei denen der gerufene Teilnehmer frei wäre. Damit ergibt sich:

\[
e_k^{\text{ex}} = e_k^{\text{ex,os}} \frac{p(n_s)}{Q} = e_k^{\text{ex,os}} \frac{Q-n_s}{Q} p(n_s)
\]

Bei der Berechnung der Angebotsrufe ist die in Abschnitt 5.3.1 eingeführte Definition 2 des Angebots zu beachten (nur die Rufe werden gewertet bei denen der gerufene Teilnehmer frei ist).

Damit wird:

\[
e_k^{\text{in}} = e_k^{\text{in,os}} \sum_{x=0}^{n_s} p(x) \frac{Q-x}{Q} = e_k^{\text{in,os}} \frac{Q-Y_{\text{ges}}}{Q}
\]

D.h. in jedem Zustand \(\{x\}\) muß die Wahrscheinlichkeit \((Q-x)/Q\), daß der gerufene Teilnehmer einer von den freien Teilnehmern ist, berücksichtigt werden.

Damit ergibt sich für die Verlustwahrscheinlichkeit des ankommenden Externverkehrs:

\[
e_k^{\text{b}} = e_k^{\text{ex}} + e_k^{\text{in}} = e_k^{\text{ex}} + e_k^{\text{in,os}} \frac{Q-n_s}{Q-Y_{\text{ges}}}
\]

Damit ist:

\[
e_k^{\text{b}} = e_k^{\text{ex}} + e_k^{\text{in,os}} \frac{Q-n_s}{Q-Y_{\text{ges}}} = e_k^{\text{ex}} + e_k^{\text{in,os}} \frac{Q-n_s}{Q-Y_{\text{ges}}} p(n_s)
\]

Die Berechnung der internen Verlustwahrscheinlichkeit des vollkommen erreichbaren Bündels erfolgt ebenfalls ausgehend von der Berechnung der internen Verlustrufe \(i_k^{\text{ex}}\) je Zeiteinheit und der internen Angebotsrufe \(i_k^{\text{in}}\) je Zeiteinheit.

Intern abgehende Verlustrufe treten im Zustand \(\{n_s\}\) auf, intern ankommende Verlustrufe treten im Zustand \(\{n_s-1\}\) auf, wobei wieder nur die Rufe berücksichtigt werden, bei denen der gerufene Teilnehmer frei ist.

Es gilt für die intern abgehenden Verlustrufe:

\[
i_k^{\text{ex}} = i_k^{\text{ex,os}} \frac{Q-n_s}{Q} p(n_s) = i_k^{\text{ex,os}} \frac{Q-n_s}{Q}
\]

und für die intern ankommen Verlustrufe:

\[
i_k^{\text{in}} = i_k^{\text{in,os}} \frac{Q-(n_s-1)}{Q} p(n_s-1) = i_k^{\text{in,os}} \frac{Q-n_s}{Q}
\]

Für die Angebotsrufe gilt:

\[
i_k^{\text{in}} = \sum_{x=0}^{n_s} i_k^{\text{in,os}} \frac{Q-x}{Q} p(x) Q-x+1
\]

Damit wird die interne Verlustwahrscheinlichkeit:

\[
i_k^{\text{b}} = i_k^{\text{ex}} + i_k^{\text{in}} = \sum_{x=0}^{n_s} (Q-x) p(x) \frac{Q-x+1}{Q} + \sum_{x=0}^{n_s} (Q-x) p(x) \frac{Q-x+1}{Q} (Q-n_s) p(n_s-1) (Q-n_s)
\]

Die Anfangswerte für die fiktiven Anrufraten für die Iteration werden aus Gl. (IV.3) und (IV.4) für \(e_k^{\text{in}} = i_k^{\text{in}} = 0\) berechnet, es wird:

\[
e_k^{\text{in, os}} = \frac{Y}{Q-Y_{\text{ges}}} \quad (IV.87)
\]

Zur Berechnung des Anfangswertes \(i_k^{\text{in, os}}\) wurde

\[
\sum_{x=0}^{n_s} (Q-x) p(x) Q-x+1 \approx (Q-Y_{\text{ges}}) \frac{Q-Y_{\text{ges}}}{Q}
\]

gesetzt (vgl. Gl. (IV.4)).
5.6.5 Die Bündelblockierungen

Mit den Zustandswahrscheinlichkeiten \(p(x) \) nach Abschnitt 5.6.4 werden die Bündelblockierungen nach Abschnitt 5.5.3 berechnet (die Berechnung der Bündelblockierungen unterscheidet sich bei gegebenen \(p(x) \) bei ZV 2 nicht von der Berechnung bei ZV 1):

- \(m_{eg} \) nach Gl.(IV.44)
- \(m_{ek} \) nach Gl.(IV.45)
- \(m_{ig} \) nach Gl.(IV.46)
- \(m_{lk} \) nach Gl.(IV.47) und
- \(m_{1} \) nach Gl.(IV.48).

5.6.6 Die Wahrscheinlichkeitsverteilung \(w(x) \) auf den \(k_{1} \) Zwischenleitungen

Die Wahrscheinlichkeitsverteilung \(w(x) \) ist, wie bereits erwähnt, für beide Wegesuchalgorithmen identisch (siehe Seite 83).

Bei der Herleitung der Rekursionsformel für die Zustandswahrscheinlichkeiten \(w(x) \) wird entsprechend zu Abschnitt 5.5.4 (Wahrscheinlichkeitsverteilung \(w(x) \) bei ZV 1) vorgegangen, d.h. es werden wieder 5 verschiedene Verkehre betrachtet (siehe Bild 16).

In Bild 16 ist:

1. Abgehender Externverkehr mit der fiktiven Anrufrate \(a_{ko1} \) je freie Quelle und der Belastung \(y_{1} \). Die Anrufrate im Zustand \(\{x+1\} \) ergibt sich zu \(a_{ko1}(k_{1}-(x+1)) \).
2. Ankommender Externverkehr mit dem fiktiven Angebot \(e_{ko1} \) und der Belastung \(e_{s1} \). Ein im Zustand \(\{x+1\} \) ankommender Externruf ist erfolgreich, wenn der gerufene Teilnehmer frei ist, die Wahrscheinlichkeit hierfür ist \((1-(x+1))/1_{1} \).
3. Kviinterner Verkehr mit der fiktiven Anrufrate \(k_{o1} \) und der Belastung \(k_{1} \). Beim kvi-internen Verkehr ist das Zielkoppelvielfach gleich dem Ursprungskoppelvielfach, d.h. ein erfolgreicher kvi-interner Ruf belegt gleichzeitig zwei von den \(k_{1} \) Leitungen. Im Zustand \(\{x\} \) ist die Anrufrate \(k_{o1}(k_{1}-x) \). Die Wahrscheinlichkeit, daß der gerufene Teilnehmer frei ist, ist \((1-(x+1))/1_{1} \) (abgehend wird die \((x+1) \)-te Quelle belegt).
4. Abgehender systeminterner Verkehr mit der Belastung \(s_{y1} \); die fiktive systeminterne Anrufrate je freie Quelle ist \(s_{o1} \). Damit ist im Zustand \(\{x+1\} \) die gesamte Anrufrate \(s_{o1}(k_{1}-(x+1)) \). Für einen systeminternen Ruf ist das Zielkoppelvielfach ungleich dem Ursprungskoppelvielfach. Der systeminterne Ruf ist aber abgehend im Ursprungskoppelvielfach nur dann erfolgreich, wenn der gerufene Teilnehmer im Ziekelkoppelvielfach frei ist. Der Zustand \(\{x\} \) des Zielkoppelvielfachs ist unabhängig vom Zustand des Ursprungskoppelvielfachs. d.h. bei Einfall eines systeminternen Rufes im Zustand \(\{x+1\} \) im Ursprungskoppelvielfach herrscht im Ziekelkoppelvielfach ein beliebiger Zustand \(\{x\} \) mit \(x=0,1,...,k_{1} \). Über den Zustand des Ziekelkoppelvielfachs ist also keine Aussage möglich. Deshalb wird für das Ziekelkoppelvielfach eine Mittelwertbetrachtung gemacht, d.h. ein systeminterner Ruf findet im Ziekelkoppelvielfach im Mittel \(Y_{1} \) Leitungen und damit \(Y_{1} \) Quellen (Teilnehmer) belegt vor. Die Wahrscheinlichkeit, daß der gerufene Teilnehmer frei ist, ist dann \((k_{1}-Y_{1})/k_{1} \), unabhängig vom Zustand \(\{x\} \) des Ursprungskoppelvielfachs.

Bild 16: Ein Koppelvielfach der Stufe 1 mit den verschiedenen Verkehren (Kommentar siehe Seite 92ff).
(5): Ankommender systeminterner Verkehr mit der Belastung $s_Y^{(1)}$.
Jede freie Quelle eines Koppelvielfachs der Stufe 1 hat die
reale interne Anrufrate $s_{o1}^{(1)}$. Das Umschlagkoppelvielfach
dieses Verkehrs ist eines von den restlichen, nicht be-
trachteten (g_{1-1}) Koppelvielfachen der Stufe 1. D.h. jede
freie Quelle, die an einem der nicht betrachteten Koppel-
vielfache angeschlossen ist, wirkt mit einer ankommenden
systeminternen Anrufrate

$$s_Y^{(1)} = \frac{s_{o1}^{(1)}}{g_{1-1}} \quad \text{(IV.88)}$$

auf das betrachtete Koppelvielfach. Hierbei wird wieder vor-
ausgesetzt, daß sich der ankommende Verkehr gleichmäßig auf
alle Koppelvielfache der Stufe 1 aufteilt. Für jeden Zu-
stand $\{x\}$ des betrachteten Koppelvielfaches ist bei einer
Belastung Y_1 je Koppelvielfach der Erwartungswert der Anzahl
der freien Quellen q_{f} der restlichen (g_{1-1}) Koppelvielfache
der Stufe 1:

$$q_{f} = (1_1 - Y_1)(g_{1-1}) \quad \text{(IV.89)}$$

Ein im Zustand $\{x=1\}$ eintreffender systeminterner ankommender
Ruf ist dann erfolgreich, wenn der gerufene Teilnehmer frei
ist, die Wahrscheinlichkeit hierfür ist $(1_1 - (x+1))/1_1$.

Damit ergibt sich:

$$(x+2)w(x+2) = e_{o1}^{(1)}(1_1 - (x+1))w(x+1) + e_k^{(1)}w(x+1) \frac{1_1 - (x+1)}{1_1} +$$

$$+ \alpha_{o1}^{(1)}(1_1 - x) \cdot 2 \cdot w(x) \frac{1_1 - (x+1)}{1_1} +$$

$$+ \alpha_{o1}^{(1)}(1_1 - (x+1))w(x+1) \frac{1_1 - Y_1}{1_1} + s_{o1}^{(1)}q_{f}w(x+1) \frac{1_1 - (x+1)}{1_1}$$

Mit $e_{o1}^{(1)} = e_{o1}/1_1$, $e_k^{(1)} = e^{(1)} + e_k^{(1)}$, $s_{o1}^{(1)}$ nach Gl.(IV.88)
und q_{f} nach Gl.(IV.89) ergibt sich:

$$w(x+2) = \alpha_{o1}^{(1)} \frac{1_1 - (x+1)}{x+2} w(x+1) +$$

$$+ 2 \cdot \alpha_{o1}^{(1)} \frac{1_1 - (x+1)}{x+2} w(x+1) \frac{1_1 - Y_1}{1_1} +$$

$$+ \alpha_{o1}^{(1)} \frac{1_1 - x}{x+2} \cdot 2 \cdot w(x) \frac{1_1 - (x+1)}{1_1}$$

mit der Randbedingung: $\sum_{x=0}^{a} w(x) = 1$

wobei $1_1 \geq k_1: a = k_1$ und
für $1_1 < k_1: a = 1_1$

Gl.(IV.90) enthält 3 Verkehrskomponenten:

1) Externverkehr mit der Belastung $e_Y^{(1)} = e_k^{(1)} + e_{o1}^{(1)}$.
2) Systeminterner Verkehr mit der Belastung $s_{o1}^{(1)}$.
3) k_v-interner Verkehr mit der Belastung $k_v^{(1)}$.

Die iterative Berechnung von $w(x)$ wird entsprechend zu Abschnitt
5.5.4 durchgeführt, wobei für die Verkehre folgende Beziehungen
gelten:

Externer Verkehr:

Fiktives Angebot: $e_{o1}^{(1)} = e_{o1}^{(1)}(1_1 - Y_1)$

Verlust: $e_{b1}^{(1)} = \frac{1_1 - a}{1_1 - Y_1} w(a)$

Belastung: $Y_1 = e_{o1}^{(1)}(1 - e_{b1}^{(1)})$

Systeminterner Verkehr:

Für das fiktive systeminternen abgebogene Angebot $s_{o1}^{(1)}$ gilt, unter
der Bedingung, daß nur die Fuhre zum Angebot beitragen, bei denen
der gerufene Teilnehmer beim Zielkoppelvielfach frei ist (vgl.
Definition des Angebots, Abschnitt 5.6.2):

$$s_{o1}^{(1)} = s_{o1}^{(1)} \sum_{x=0}^{a} (1_1 - x)w(x) \frac{1_1 - Y_1}{1_1} = s_{o1}^{(1)}(1_1 - Y_1) \frac{1_1 - Y_1}{1_1}$$

Hierbei ist $(1_1 - Y_1)/1_1$ die vom momentanen Zustand $\{x\}$ des
be-
trachteten (Umschlag-) Koppelvielfachs unabhängige Wahrschein-
llichkeit, daß der gerufene Teilnehmer frei ist.
Für das systemintern ankommende Angebot \(\text{sk}^A_{o1} \) gilt:

\[
\text{sk}^A_{o1} = \text{sk}^X_{o1} q_r \sum_{x=0}^{a} \frac{1-x}{1} \text{w}(x)
\]

Mit \(\text{sk}^X_{o1} \) nach Gl.(IV.88) und \(q_r \) nach Gl.(IV.89) ergibt sich:

\[
\text{sk}^A_{o1} = \text{sk}^X_{o1} (1-y_1) \frac{1-y_1}{1} = \text{sg}^A_{o1} = \text{sk}^A_{o1}
\]

(IV.93)

Das systemintern abgehende Angebot ist also gleich dem systemintern ankommenden Angebot.

Für den systeminternen Verlust in abgehender Richtung des vollkommen erreichbaren Bündels gilt:

\[
\text{sk}^b_1 = \frac{\text{sk}^X_{o1} (1-a) \text{w}(a) \frac{1-y_1}{1}}{\text{sk}^X_{o1} (1-y_1) \frac{1-y_1}{1}} = 1-a \frac{1}{1-y_1} \text{w}(a)
\]

Der Verlust in abgehender Richtung ist:

\[
\text{sk}^b_1 = \frac{\text{sk}^X_{o1} q_r \text{w}(a) \frac{1-y_1}{1}}{\text{sk}^X_{o1} q_r \frac{1-y_1}{1}} = 1-a \frac{1}{1-y_1} \text{w}(a) = \text{sg}^b_1
\]

(IV.94)

mit \(a \) nach Gl.(IV.91).

Für die systeminternen Belastungen gilt:

\[
\text{sg}^Y_1 = \text{sg}^A_{o1} (1 - \text{sg}^b_1)
\]

\[
\text{sk}^Y_1 = \text{sk}^A_{o1} (1 - \text{sk}^b_1)
\]

und damit wird die gesamte systeminterne Belastung (mit Gl.(IV.93) und (IV.94)):

\[
\text{s}^Y_1 = \text{sg}^Y_1 + \text{sk}^Y_1 = 2 \cdot \text{sk}^A_{o1} (1 - \text{sg}^b_1)
\]

(IV.95)

Koppelvielschichtinterner Verkehr:

Bei Eintreffen eines kv-internen Rufes im Zustand \(\{ x \} \) des betrachteten (vollkommen erreichbaren) Bündels ist die Wahrscheinlichkeit, daß der gerufene Teilnehmer frei ist \((1-(x+1))/1 \). Damit ergibt sich das fiktive kv-interne Angebot:

\[
\text{kg}^b_1 = \frac{\text{sk}^X_{o1} (1-a) \text{w}(a) \frac{1-(a+1)}{1}}{\text{sk}^X_{o1} (1-a) \text{w}(a) (1-(a+1))} = \frac{(1-a) \text{w}(a) (1-(a+1))}{(1-a) \text{w}(a) (1-(a+1))}
\]

(IV.96)

In abgehender Richtung tritt im Zustand \(\{ a \} \) (a nach Gl.(IV.91)) kv-interner Verlust auf, aber wie das Angebot wurden auch für den Verlust nur die Rufe gewertet, bei denen der gerufene Teilnehmer frei ist. Es wird:

\[
\text{kg}^b_1 = \frac{\text{sk}^X_{o1} (1-a) \text{w}(a) \frac{1-(a+1)}{1}}{\text{sk}^X_{o1} (1-a) \text{w}(a) (1-(a+1))} = \frac{(1-a) \text{w}(a) (1-(a+1))}{(1-a) \text{w}(a) (1-(a+1))}
\]

(IV.97)

In ankomender Richtung tritt im Zustand \(\{ a \} \) kv-interner Verlust auf, da ein Ruf, der im Zustand \(\{ a \} \) eintreffen, in abgehender Richtung die letzte freie Leitung belegt. Mit der Wahrscheinlichkeit \((1-a)/1 \), daß der gerufene Teilnehmer frei ist, ergibt sich:

\[
\text{kg}^b_1 = \frac{\text{sk}^X_{o1} (1-a) \text{w}(a) \frac{1-(a+1)}{1}}{\text{sk}^X_{o1} (1-a) \text{w}(a) (1-(a+1))} = \frac{(1-(a+1)) \text{w}(a) (1-(a+1))}{(1-(a+1)) \text{w}(a) (1-(a+1))}
\]

(IV.98)

Mit \(\text{kg}^b_1 = \text{kg}^b_1 + \text{kk}^b_1 \)

ergibt sich für die kv-interne Belastung:

\[
\text{kg}^Y_1 = 2 \cdot \text{kg}^A_{o1} (1 - \text{kg}^b_1)
\]

(IV.99)

(IV.100)

Damit können die Zustandsverhältnisse von der Recursionsformel (IV.90) mit Hilfe der Beziehungen für die Belastungen iterativ berechnet werden (vgl. Abschnitt 5.5.2).
Die Anfangswerte für die Iteration sind (Verlustwahrscheinlichkeiten gleich Null):

\[
\begin{align*}
\text{e}_0 &= \frac{e_Y}{1 - Y_1} \quad \text{(nach Gl.(IV.92) mit e} _b_1 = 0) \\
\text{s}_0 &= \frac{s_Y}{2(1 - Y_1 - Y_1)} \quad \text{(nach Gl.(IV.95) mit s} _g_1 = 0) \\
\text{k}_0 &= \frac{k_Y}{2(1 - Y_1 - Y_1)} \quad \text{(nach Gl.(IV.100) mit k} _b_1 = 0)
\end{align*}
\]

Zur Berechnung des Anfangswertes \(k'_0\) wurde

\[
\sum_{x=0}^{a} (1 - x)w(x) \frac{1 - (x + 1)}{1} \approx (1 - Y_1 - Y_1) \quad \text{gesetzt (vgl.Gl.(IV.96)).}
\]

5.6.7 Die Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- bzw. Zielkoppelfviefachs

5.6.7.1 Wegesuchalgorithmus 1 (vgl. Seite 81ff)

Beim Wegesuchalgorithmus 1 wird beim Internverkehr bereits für das Angebot in abgehender Richtung berücksichtigt, ob der ge- rufene Teilnehmer frei ist. Dementsprechend werden bei der Ver- lustberechnung alle Verluste (abgehend bzw. ankommend) auf diese reduzierte Zahl von Angeboten bezogen (vgl. Abschnitt 5.6.3, Gl.(IV.73)). Die zur iterativen Berechnung von \(w(x)\) notwendigen Verlustwahrscheinlichkeiten \(s_g, s_b, k_g, k_b\) und \(k_b\) werden ebenfalls entsprechend zu Gl.(IV.73) (vgl. Abschnitt 5.6.6) berechnet. Damit gelten für die Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- bzw. Zielkoppelfviefachs die Gleichungen von Abschnitt 5.6.6. Der Übersichtlichkeit halber werden diese Beziehungen hier nochmals gezeigt und mit eigenen Gleichungsnummern versehen:

\[
\begin{align*}
es_b &= s_b = \frac{1 - a}{1 - Y_1} w(a) \\
(IV.102)(vgl.Gl.(IV.92))
\end{align*}
\]

\[
\begin{align*}
k_b &= k_b = \frac{1 - a}{1 - Y_1} (1 - s_b) w(a) \\
(IV.103)(vgl.Gl.(IV.94))
\end{align*}
\]

\[
\begin{align*}
k_b &= \frac{(1 - a)w(a)(1 - (a + 1))}{\sum_{x=0}^{a} (1 - x)w(x)(1 - (x + 1))} \\
(IV.104)(vgl.Gl.(IV.97))
\end{align*}
\]

\[
\begin{align*}
k_b &= \frac{(1 - (a - 1))w(a - 1)(1 - a)}{\sum_{x=0}^{a} (1 - x)w(x)(1 - (x + 1))} \\
(IV.105)(vgl.Gl.(IV.98))
\end{align*}
\]

\[
\begin{align*}
k_b &= k_b + k_b \\
(IV.106)(vgl.Gl.(IV.91))
\end{align*}
\]

wobei für a Gl.(IV.91) gilt.

Der relative Anteil \(k_C_L_1/k_C_A\):

Es ist die Anzahl der kv-intern angebotenen Rufe \(k_C_A\) je Zeiteinheit (vgl. Gl.(IV.96)):

\[
k_C_A = k_b \sum_{x=0}^{a} (1 - x)w(x) \frac{1 - (x + 1)}{1}
\]

Die Anzahl der kv-internen Rufe \(k_C_L_1\) je Zeiteinheit, die nicht in abgehender Richtung infolge von Blockierung des Ursprungs- koppelfviefachs verloren gehen, ergibt sich aus der Differenz der Anzahl der kv-intern angebotenen Rufe und der Anzahl der infolge von Blockierung des Ursprungskoppelfviefachs verlorenen Rufen. Damit wird (vgl. Gl.(IV.97)):

\[
k_C_L_1 = k_C_A - k_b (1 - s_b) w(a) \frac{1 - (a + 1)}{1}
\]

Damit ergibt sich:

\[
k_C_L_1/k_C_A = 1 - \frac{(1 - a)w(a)(1 - (a + 1))}{\sum_{x=0}^{a} (1 - x)w(x)(1 - (x + 1))}
\]

Mit Gl.(IV.104) ist:

\[
k_C_L_1/k_C_A = 1 - k_b \\
(IV.107)
\]

Entsprechend gilt für die restlichen Anteile:

\[
k_C_L_1/k_C_A = 1 - k_b \\
(IV.108)
\]
\[s_{C_1}^g = 1 - s_{g_1}^b \quad (IV.109) \]
\[s_{C_1}^k = s_{k_1}^b (1 - s_{g_1}^b) \quad (IV.110) \]
\[s_{C_1}^l = (1 - s_{g_1}^b) (1 - s_{k_1}^b) \quad (IV.111) \]

5.6.7.2 Wegesuchalgorithmus 2 (vgl. Seite 82ff)

Externverkehr:

Für den Externverkehr ist der Wegesuchalgorithmus ohne Bedeutung, es gilt Gl. (IV.102):

\[s_{g_1}^b = \frac{1 - a}{1 - Y_1} w(a) \]

Internverkehr (kv-externer bzw. systeminterner Verkehr):

Beim Wegesuchalgorithmus 1 war das (kv-externe bzw. systeminterne) Angebot im Zustand \{x\} des Koppelvielfachs der Stufe 1 eine Funktion der momentan freien Quellen und der Wahrscheinlichkeit, mit der der gerufene Teilnehmer frei ist (vgl. Gl. (IV.105)).

Damit ergibt sich allgemein für die Verlustwahrscheinlichkeit infolge von Blockierung des Ursprungskoppelvielfachs (die Gleichung gilt sowohl für den kv-externen als auch den systeminternen Verkehr):

\[b_1 = \frac{s_{C_1}^g V_1 + k C_1 V_1}{s_{C_1}^g \text{Vges} + k C_1 \text{Ages}} \quad (IV.112) \]

Hierbei ist (kv-extern bzw. systemintern):

\[g_{C_1} V_1 : \text{Die Zahl der Rufe je Zeitseinheit, die abgehend infolge von Blockierung des Ursprungskoppelvielfachs verloren gehen.} \]

\[k C_1 V_1 : \text{Die Zahl der Rufe je Zeitseinheit, die in ankommender Richtung infolge von Blockierung des Zielkoppelvielfachs verloren gehen.} \]

\[g_{C_1 \text{Vges}} : \text{Die Zahl der Rufe je Zeitseinheit, die insgesamt in abgehender Richtung verloren gehen (durch Blockierung des Ursprungskoppelvielfachs oder durch Bündelblockierung oder eventuell durch Zwischenblockierung).} \]

\[k C_1 \text{Ages} : \text{Die Zahl der Rufe je Zeitseinheit, die in abgehender Richtung nicht verloren gehen und bei denen der gerufene Teilnehmer frei ist. D.h. die Zahl der Rufe, die in ankommender Richtung angeboten werden.} \]

Bei der Berechnung von \(b_1 \) werden also die Verlustrufe infolge von Blockierung des Ursprungskoppelvielfachs bezogen auf die insgesamt angebotenen Rufe, wobei diese Zahl gemäß Gl. (IV.75) definiert ist:

\[C_A = g_{C_1 \text{Vges}} + k C_1 \text{Ages} \quad (IV.113) \]

Kv-interner Verkehr:

Nach Gl. (IV.112) gilt:

\[b_1 = \frac{k C_1 V_1 + k k C_1 V_1}{k g_{C_1 \text{Vges}} + k k C_1 \text{Ages}} \quad (IV.114) \]
Dementsprechend ergibt sich für die Verlustwahrscheinlichkeits-
anteile:

\[
\begin{align*}
\text{k}_g^b_{1} &= \frac{\text{k}_g^C V_1}{\text{k}_g^C V_{\text{ges}}} \quad \text{(IV.115)} \\
\text{k}_k^b_{1} &= \frac{\text{k}_k^C V_1}{\text{k}_k^C V_{\text{ges}}} + \text{k}_k^C A_{\text{ges}} \quad \text{(IV.116)}
\end{align*}
\]

Die Zahl der insgesamt in abgehender Richtung auftretenden Ver-
lustrufe je Zeiteinheit ergibt sich zu (ohne Zwischenblockierung):

\[
\text{k}_g^C V_{\text{ges}} = k^\alpha \left[(1-a)w(a) + \{(1-Y_1) - (1-a)w(a)\} \left[m_1 \right]_{1g} \right] \quad \text{(IV.117a)}
\]

mit

\[
\begin{align*}
k^\alpha & : \text{Kv-interne Anrufrate je freie Quelle.} \\
k^\alpha (1-a)w(a) & : \text{Anzahl der Verlustrufe je Zeiteinheit in abgehender} \\
& \text{Richtung infolge von Blockierung des Ursprungskop-
& pelvielachs. Im Unterschied zum Wegesuchalgorithmus}
& \text{1 (vgl. G1.(IV.104)) wird hier beim Wegesuchalgo-
& rithmus 2 für den abgegangenen Verkehr die wahrhaf-
& tiglichkeit, daß der gefundene Teilnehmer frei ist,}
& \text{noch betrachtet, da der gefundene Teilnehmer erst}
& \text{nach erfolgreicher Wegesuche in abgehender Richtung}
& \text{ermittelt wird (vgl. Abschnitt 5.6.3).} \\
\left[m_1 \right]_{1g} & : \text{Bündelblockierung in abgehender Richtung (intern).} \\
k^\alpha (1-Y_1) & : \text{Anzahl der insgesamt angebotenen kv-internen Rufe}
& \text{je Zeiteinheit in abgehender Richtung.}
\end{align*}
\]

Die Zahl der insgesamt in abgehender Richtung auftretenden Ver-
lustrufe je Zeiteinheit ergibt sich zu (ohne Zwischenblockierung):

\[
\text{k}_k^C A_{\text{ges}} = k^\alpha \sum_{x=0}^{a-1} (1-x)w(x-1) \frac{1-(x+1)}{1} (1 - \left[m_1 \right]_{1g}) \quad \text{(IV.118a)}
\]

mit:

\[
\begin{align*}
\alpha (1-x) & : \text{Anrufrate im Zustand } \{x\}. \\
\frac{1-(x+1)}{1} & : \text{Wsw., daß der gefundene Teilnehmer bei Einfall eines}
& \text{kv-internen Rufes im Zustand } \{x\} \text{ frei ist (Zielkoppel-
& vielach = Ursprungskoppelvielach).} \\
(1 - \left[m_1 \right]_{1g}) & : \text{Wsw., daß keine Bündelblockierung in abgehender Rich-
& tung auftritt (intern).}
\end{align*}
\]

Damit ist

\[
\text{k}^\alpha (1-x) \frac{1-(x+1)}{1} (1 - \left[m_1 \right]_{1g})
\]

die Anzahl der Rufe je Zeiteinheit, die im Zustand \{x\} eintreffen,

\[
\text{die nicht in abgehender Richtung durch Bündelblockierung verloren}
\]

gehen und bei denen der gefundene Teilnehmer frei ist.

Da im Zustand \{x\} alle einfallenden Rufe in abgehender Richtung

\[
\text{infolge von Blockierung des Ursprungskoppelvielachs verloren gehen,}
\]

erfolgt bei der Berechnung von \text{k}_k^C A_{\text{ges}} in G1.(IV.118a) die Sum-

mation von \(x=0\) bis \(x=a-1\).

Mit Zwischenblockierung gilt (vgl. Abschnitt 5.4.1.2, G1.(IV.14b)):

\[
\text{k}_k^C A_{\text{ges}} = k^\alpha \sum_{x=0}^{a-1} (1-x)w(x-1) \frac{1-(x+1)}{\left[m_1 \right]_{1g}} \sum_{y=2}^{a-2} \left((1 - \left[m_1 \right]_{1g}) \right) \quad \text{(IV.118b)}
\]

Mit \text{k}_g^C V_{\text{ges}} nach G1.(IV.117) und \text{k}_k^C A_{\text{ges}} nach G1.(IV.118) kann

\[
\text{die Zahl der wirksam angebotenen kv-internen Rufe } k^C_A \text{ je Zeitein-
& heit berechnet werden (vgl. G1.(IV.119)):
\]

\[
k^C_A = \text{k}_g^C V_{\text{ges}} + \text{k}_k^C A_{\text{ges}} \quad \text{(IV.119)}
\]
Alle Rufe, die im Zustand \(a\) einfallen, erleiden in abgänger Richtung Verlust infolge von Blockierung des Ursprungskoppelvielfachs, damit ist:

\[
\kappa_{V1}^C = \kappa^\alpha (1_a - a)w(a) \quad \text{(IV.120)}
\]

Die Rufe, die im Zustand \((a-1)\) einfallen, erleiden in ankommender Richtung Verlust infolge von Blockierung des Zielkoppelvielfachs (= Ursprungs-koppelvielfach). Es werden nur die Rufe gewertet, bei denen der gerufene Teilnehmer frei ist, die Wahrscheinlichkeit hierfür ist dann \((1_a - a)A1_r\). Damit wird:

\[
\kappa_{V1}^C = \kappa^\alpha (1_a - (a-1))w(a-1)A_{1_r}^{a-1}A_{1_r} \quad \text{(IV.121)}
\]

Mit den Gleichungen (IV.117) bis (IV.121) können

- \(k_{b1}^b\) nach Gl. (IV.114),
- \(k_{b1}^g\) nach Gl. (IV.115) und
- \(k_{b1}^l\) nach Gl. (IV.116) berechnet werden.

Der relative Anteil \(\kappa_{C1}^L/\kappa^C\) der kv-internen Rufe, die in abgänger Richtung im Ursprungs-koppelvielfach eine freie Zwillenleitun finden:

\[
\kappa_{C1}^L = \kappa^\alpha A_{1_r}^{a-1} - \kappa^\alpha (1_a - a)w(a) \quad \text{(IV.122)}
\]

D.h. \(\kappa_{C1}^L\) ist "Zahl der in abgänger Richtung angebotenen kv-internen Rufe" minus "Zahl der in abgänger Richtung infolge von Blockierung des Ursprungs-koppelvielfachs verloren gegangen kv-internen Rufe".

Mit \(\kappa^C_{A}\) nach Gl. (IV.119) und \(\kappa_{C1}^L\) nach Gl. (IV.122) kann \(\kappa_{C1}^L/\kappa^C\) berechnet werden. Es gilt:

\[
\frac{\kappa_{C1}^L}{\kappa^C_{A}} = \frac{\kappa^\alpha A_{1_r}^{a-1} - (1_a - a)w(a)}{\kappa_{V1}^C + \kappa_{Vges} + \kappa_{Vges}}
\]

Der Vergleich mit \(k_{b1}^1\) nach Gl. (IV.115) zeigt, daß hier beim Wegesuchalgorithmus 2 - anders als beim Algorithmus 1 -

\[
\frac{\kappa_{C1}^L}{\kappa^C_{A}} = 1 - k_{b1}^1
\]

Dies wird dadurch verursacht, daß beim Wegesuchalgorithmus 2 die Zahl der wirksam angebotenen Rufe \(\kappa^C_{A}\) ungleich der Zahl der insgesamt in abgänger Richtung angebotenen Rufe \(\kappa^\alpha A_{1_r}^{a-1}\) ist.

Entsprechend erfolgt die Berechnung des Anteils \(\kappa_{C1}^L/\kappa^C\) (Anteil der kv-internen Rufe, die weder in abgänger noch in ankommender Richtung infolge von Blockierung des Ursprungs- (= Ziel-) Koppelvielfachs verloren gehen):

Beim kv-internen Verkehr sind rufende und gerufene Teilnehmer an derselben Koppelvielfach der Stufe 1 angeschlossen (Ursprungs- koppelvielfach = Zielkoppelvielfach). D.h. Verlust infolge von Blockierung dieses Koppelvielfachs der Stufe 1 tritt in abgänger Richtung im Zustand \(a\) und in ankommender Richtung im Zustand \((a-1)\) auf. Damit gehen alle Rufe, die weder im Zustand \(a\) noch im Zustand \((a-1)\) einfallen nicht infolge von Blockierung in der Stufe 1 verloren. Da nur die Rufe gewertet werden, bei denen der gerufene Teilnehmer frei ist, ergibt sich:

\[
\kappa^C_{L1} = \kappa^\alpha \sum_{x=0}^{a-1} (1_a - x)w(x)A_{1_r}^{a-x}A_{1_r} \quad \text{(IV.123)}
\]

Mit \(\kappa^C_{A}\) nach Gl. (IV.119) und \(\kappa^C_{L1}\) nach (IV.123) kann \(\kappa^C_{L1}/\kappa^C_{A}\) berechnet werden.
Systeminterner Verkehr:

Entsprechend zu Gl. (IV.115) gilt:

\[s_g^{b_1} = s_g^{c_{V1}} s_a^{c_A} \] \hspace{1cm} (IV.124)

und

\[s_a^{c_A} = s_g^{c_{Vges}} + s_g^{c_{Ages}} \] \hspace{1cm} (IV.125)

Die Anzahl der insgesamt systeminternen verloren gehenden Rufe je Zeiteinheit in abgehender Richtung ergibt sich zu (ohne Zwischenblockierung):

\[s_g^{c_{Vges}} = s_g \left[(1-a)w(a) + \left\{ (1-Y_1) - (1-a)w(a) \right\} \cdot \left[m_{1g}\right] \right] \] \hspace{1cm} (IV.126a)

Gleichung (IV.126a) ist identisch mit Gl. (IV.117a), wobei \(s_g \) durch die systeminterne Anrufrate je freie Quelle \(s_g \) ersetzt ist, d.h. in abgehender Richtung unterscheiden sich beide Verkehrs nur in der Anrufrate.

Mit Zwischenblockierung gilt (vgl. Gl. (IV.117b)):

\[s_g^{c_{Vges}} = s_g \left[(1-a)w(a) + \left\{ (1-Y_1) - (1-a)w(a) \right\} \left[1 - \left[m_{1p}\right] \left[1 - \left[m_{1g}\right] \right] \right] \right] \] \hspace{1cm} (IV.126b)

Gl. (IV.126b) gilt sowohl für den blockinternen als auch den nicht-blockinternen Verkehr, da in abgehender Richtung für beide Verkehrstypen die Zwischenblockierungen identisch sind (vgl. Abschnitt 5.5.7, Gl. (IV.69) und Gl. (IV.72)). Es gilt also:

\[m_{1p}\left[m_{1g}\right] = \left[m_{1p}\left[m_{1g}\right]\right] \] \hspace{1cm} (IV.127)

Die Zahl der insgesamt angebotenen systeminternen Rufe je Zeiteinheit in ankommender Richtung ist (ohne Zwischenblockierung):

\[s_g^{c_{Ages}} = s_g \left\{ (1-Y_1) - (1-a)w(a) \right\} \cdot \left(1 - \left[m_{1g}\right] \right) \] \hspace{1cm} (IV.128a)

mit:

\[s_g \left\{ (1-Y_1) - (1-a)w(a) \right\} : \]

Anzahl der Rufe je Zeiteinheit (systemintern), die nicht in abgehender Richtung durch Blockierung des Ursprungs koppeliervielfachs verloren gehen.

\[(1 - \left[m_{1g}\right]) : \text{wsch., daß in abgehender Richtung für Internrufe keine Bündelblockierung existiert.} \]

\[\frac{1 - Y_1}{1} : \text{Erwartungsgemäß wshc., daß der gerufene Teilnehmer (im Mittel) frei ist (Ursprungs koppeliervielfach ≠ Zielkoppeliervielfach, vgl. Abschnitt 5.6.6, Erklärung zu Verkehr (4)).} \]

Mit Zwischenblockierung gilt (vgl. Gl. (IV.118b)):

\[s_g^{c_{Ages}} = s_g \left\{ (1-Y_1) - (1-a)w(a) \right\} \left(1 - \left[m_{1g}\right] \right) \] \hspace{1cm} (IV.128b)

Auch bei der Berechnung von \(s_g^{c_{Ages}} \) muß wegen Gl. (IV.127) nicht zwischen blockinternen und nicht-blockinternen Verkehr unterschieden werden. Damit muß aber auch bei der Berechnung der verschiedenen Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- bzw. Zielkoppeliervielfachs nicht zwischen diesen beiden Verkehrstypen unterschieden werden.

Damit kann mit Gl. (IV.126) und (IV.128) die Anzahl der insgesamt angebotenen systeminternen Rufe \(s_g^{c_A} \) je Zeiteinheit nach Gl. (IV.125) berechnet werden.

Alle Rufe, die im Zustand \(a \) einfallen, gehen in abgehender Richtung infolge von Blockierung des Ursprungs koppeliervielfachs verloren. Es wird (a nach Gl. (IV.91)):

\[s_g^{c_{V1}} = s_g \left\{ (1-a)w(a) \right\} \] \hspace{1cm} (IV.129)

Mit \(s_g^{c_A} \) nach Gl. (IV.125) und \(s_g^{c_{V1}} \) nach Gl. (IV.129) kann \(s_g^{b_1} \) nach Gl. (IV.124) berechnet werden.

Zur Berechnung der internen Verlustwahrscheinlichkeiten sind noch folgende relativen Anteile zu bestimmen:

- Der relative Anteil \(s_g^{c_{LI}} / s_g^{c_A} \) der systeminternen Rufe, die in abgehender Richtung nicht infolge von Blockierung des Ursprungs koppeliervielfachs verloren gehen.

Die Anzahl der systeminternen Rufe \(s_g^{c_{LI}} \), die nicht in abgehender Richtung infolge von Blockierung des Ursprungs koppeliervielfachs
Verloren gehen, ergibt sich zu (vgl. Gl. (IV.122)):

\[s_{\text{GL1}}^C = e^{\alpha \left((1 - Y_1/a) - (1 - a)w(a) \right)} \]

(IV.130)

Mit \(s_A^C \) nach Gl. (IV.125) und \(s_{\text{GL1}}^C \) nach Gl. (IV.130) kann
\(s_{\text{GL1}}^C/s_A^C \) berechnet werden.

- Der relative Anteil \(s_{\text{GL1}}^C/s_A^C \) der systeminternen Rufe, die nicht in abgehender, aber in ankommender Richtung Verlust infolge von Blockierung des Zielkoppelvielfachs erleiden (keine Blockierung des Ursprungs- koppelvielfachs):

Die Wahrscheinlichkeit, daß das Zielkoppelvielfach blockiert ist, ist \(w(a) \). Die Wahrscheinlichkeit, daß der gerufene Teilnehmer im blockierten Zustand \(\{x\} \) frei ist, ist \((1 - a)/1 \).

Damit wird die Anzahl der Rufe je Zeiteinheit, die nicht in abgehender aber in ankommender Richtung Verlust infolge von Blockierung des Zielkoppelvielfachs erleiden:

\[s_{\text{GL1}}^C = s_{\text{GL1}}^C \cdot w(a) \cdot \frac{1 - a}{1} \]

Damit ergibt sich (mit \(s_A^C \) nach Gl. (IV.125)):

\[s_{\text{GL1}}^C/s_A^C = \frac{s_{\text{GL1}}^C \cdot w(a) \cdot \frac{1 - a}{1}}{s_A^C} \]

(IV.131)

- Der relative Anteil \(s_{\text{GL1}}^C/s_A^C \) der systeminternen Rufe, die weder in abgehender noch in ankommender Richtung Verlust infolge von Blockierung des Ursprungs- bzw. Zielkoppelvielfachs erleiden.

Die Anzahl der Rufe je Zeiteinheit, die in abgehender Richtung nicht infolge von Blockierung des Ursprungs- koppelvielfachs verloren gehen und bei denen der gerufene Teilnehmer im Zustand \(\{x\} \) des Zielkoppelvielfachs frei ist, ergibt sich zu:

\[s_{\text{GL1}}^C \cdot \frac{1 - x}{1} \]

Da nur im Zustand \(\{x\} \) des Zielkoppelvielfachs Verlust in ankommender Richtung infolge von Blockierung dieses Koppelvielfachs der Stufe 1 auftritt, ergibt sich die Anzahl der Rufe je Zeiteinheit, die weder in abgehender noch in ankommender Richtung durch Blockierung in der Stufe 1 verloren gehen, zu:

\[\sum_{x=0}^{2-a} s_{\text{GL1}}^C \cdot w(x) \cdot \frac{1 - x}{1} = s_{\text{GL1}}^C \left(\frac{1 - Y_1}{1} - \frac{1 - a}{1} \right) w(a) \]

Damit wird (mit \(s_A^C \) nach Gl. (IV.125)):

\[s_{\text{GL1}}^C/s_A^C = \frac{s_{\text{GL1}}^C \left(\frac{1 - Y_1}{1} - \frac{1 - a}{1} \right) w(a)}{s_A^C} \]

(IV.132)

5.6.8 Die Wahrscheinlichkeitsverteilung \(p_r(x) \) auf das Zwischenleitungsband zwischen der Stufe \(\nu \) und der Stufe \(\nu+1 \)

Entsprechend zur Wahrscheinlichkeitsverteilung \(w(x) \) auf den \(k \) Zwischenleitungen zwischen der Stufe 1 und der Stufe 2 gilt für das Zwischenleitungsband zwischen der Stufe \(\nu \) und der Stufe \(\nu+1 \) (vgl. Gl. (IV.90)):

\[p_r(x+2) = e^{\alpha \cdot Y_1/2} \cdot p_r(x+1) + \sum_{a=0}^{k} \frac{1 - Y_1}{a} \cdot p_r(x+1) \frac{Y_1}{2} \]

\[+ \sum_{a=2}^{k} \frac{1 - a}{2} \cdot p_r(x+1) \frac{Y_1}{2} \]

mit der Randbedingung:

\[\sum_{x=0}^{n_r} p_r(x) = 1 \]

Hierbei ist (vgl. Abschnitt 5.5.6, Bild 15):

\(n_r = \frac{X_r}{G} \): die Zahl der Zwischenleitungen des betrachteten Zwischenleitungsbandes (wo \(G \) die Zahl der "Linkblöcke" ist)

\(q = \frac{1 - Y_1}{2} \): die Zahl der Quellen, die an dem "Linkblock" eines bestimmten Zwischenleitungsbandes angeschlossen sind.

\(Y_1 \): die Belastung eines Zwischenleitungsbandes.

\(e^{\alpha \cdot Y_1/2} \): die fiktive externe Anrufrate je freie Quelle.

\(b \cdot Y_1 \): die fiktive Anrufrate je freie Quelle des nicht-blockinternen Verkehrs.

\(b \cdot Y_1 \): die fiktive Anrufrate je freie Quelle des blockinternen Verkehrs.
Die iterative Berechnung von $p_\nu(x)$ wird entsprechend zu Abschnitt 5.5.4 durchgeführt, wobei für die Verkehre folgende Beziehungen gelten (vgl. Abschnitt 5.6.6):

Externverkehr (vgl. Gl. (IV.92)):

Fiktives Angebot: $e_\nu^{O\nu} = e_\nu^{O\nu}(q, \frac{n_\nu}{G}) = e_\nu^{X\nu}(1-\frac{Y_1}{G})$

Verlust: $e_\nu^{-\nu} = \frac{q-n_\nu}{q-Y_1^{n_\nu}} p_\nu(n_\nu)$

Belastung: $e_\nu^{Y\nu} = e_\nu^{Y\nu} + e_\nu^{Y\nu} = \frac{1}{G} \left(Y_\nu + Y_1^{n_\nu} \right) = e_\nu^{O\nu}(1-e_\nu^{-\nu})$

Nicht-blockinterner Verkehr (vgl. Abschnitt 5.6.6, systeminterner Verkehr):

Es gilt: $B_\nu^{O\nu} = B_\nu^{X\nu}(q, \sum_{x=0}^{n_\nu} (q-x)p_\nu(x), \frac{1}{1+1} = B_\nu^{O\nu}(1-\frac{Y_1}{1+1})$

Es werden nur die Rufe als wirksame Angebotsrufe gezählt, die auf einen freien Teilnehmer treffen. Die Wahrscheinlichkeit hierfür ist $(1-\frac{Y_1}{1+1})$ (Mittelwertsbetrachtung!).

Damit wird (vgl. Gl. (IV.93)):

$B_\nu^{O\nu} = B_\nu^{X\nu}(q, \frac{n_\nu}{G}, \frac{1+1}{1+1} = B_\nu^{O\nu}(1-\frac{1}{1+1})$

Für den nicht-blockinternen Verkehr gilt (vollkommen erreichbares Bündel; vgl. Gl. (IV.94)):

$b_\nu^{O\nu} = \frac{B_\nu^{X\nu}(q-n_\nu)p_\nu(n_\nu), \frac{1+1}{1+1} = \frac{1}{G} \left(\frac{1}{1+1} \right) p_\nu(n_\nu)$

Die nicht-blockinterne Belastung zwischen der Stufe ν und der Stufe $\nu+1$ wird (vgl. Gl. (IV.95)):

$Y_\nu^{\nu} = (1-\frac{1}{G}) \cdot \frac{Y_1^{\nu}}{G} = 2 \cdot b_\nu^{O\nu} \cdot (1 - b_\nu^{-\nu})$

Blockinterner Verkehr (vgl. Abschnitt 5.6.6, kw-interner Verkehr):

Für das fiktive Angebot des blockinternen Verkehres gilt (vgl. Gl. (IV.96)):

$b_\nu^{O\nu} = \sum_{x=0}^{n_\nu} (q-x)p_\nu(x) \frac{q-(x+1)}{q}$

Der Verlust des blockinternen Verkehres ist (vollkommen erreichbares Bündel; vgl. Gl. (IV.97)):

- in abgehender Richtung (vgl. Gl. (IV.97)):

$bg_\nu^{O\nu} = \sum_{x=0}^{n_\nu} (q-x)p_\nu(x) \frac{q-(x+1)}{q}$

- in ankommender Richtung (vgl. Gl. (IV.98)):

$bk_\nu^{O\nu} = \sum_{x=0}^{n_\nu} (q-x)p_\nu(x) \frac{q-(x+1)}{q}$

- insgesamt:

$b_\nu^{O\nu} = bg_\nu^{O\nu} + bk_\nu^{O\nu}$

Damit ergibt sich die Belastung des blockinternen Verkehres (vgl. Gl. (IV.100)):

$Y_\nu^{\nu} = \frac{1}{G} \cdot \left(2 \cdot b_\nu^{O\nu} \cdot (1 - b_\nu^{-\nu}) \right)$

Damit können die Zustandswahrscheinlichkeiten $p_\nu(x)$ ausgehend von der Rekursionsformel (IV.133) iterativ berechnet werden (Anfangswerte für die Iteration entsprechend zu Gl. (IV.101)).
2.6.3 Die Zwischenblockierungen

Mit den Zustandswahrscheinlichkeiten \(p_j(x) \) nach Abschnitt 5.6.8 werden die Zwischenblockierungen nach Abschnitt 5.5.7 berechnet (bei gegebenem \(p_j(x) \) ist die Berechnung der Zwischenblockierung bei ZV 2 und ZV 1 identisch).

\[
\begin{align*}
[m_{1Y}]_{ek} & = [m_{1Y}]_{ek} \quad \text{nach Gl. (IV.68), Seite 77,} \\
[m_{1Y}]_{bk} & = [m_{1Y}]_{bk} \quad \text{nach Gl. (IV.69), Seite 77,} \\
[m_{1Y}]_{bk} & = [m_{1Y}]_{bk} \quad \text{nach Gl. (IV.70), Seite 78,} \\
[m_{1Y}]_{bk} & = [m_{1Y}]_{bk} \quad \text{nach Gl. (IV.71), Seite 78 und} \\
[m_{1Y}]_{bk} & = [m_{1Y}]_{bk} \quad \text{nach Gl. (IV.72), Seite 78.}
\end{align*}
\]

5.7 Ergebnisse

In diesem Abschnitt werden die mit dem vorgestellten Näherrungsverfahren ermittelten Ergebnisse Simulationsergebnissen gegenübergestellt (Diagramm 1 bis 5).

In den Diagrammen sind die Ergebnisse des Näherrungsverfahrens mit einer durchgezogenen Linie gekennzeichnet. Die Simulationsergebnisse sind mit ihrem Vertrauensintervall und einer statistischen Aussagenwahrscheinlichkeit von 95% durch \(\bar{1} \) dargestellt.

Die Berechnung der Verlustwahrscheinlichkeit des abgehenden bzw. ankommenden Externerverkehrs hat ergeben, daß beide Verlustwahrscheinlichkeiten - unter den Voraussetzungen, die dem Nährerrungsverfahren zugrunde liegen, d.h. "Punkt-Bündel-Wahl" vom Ursprung- bzw. Zelkkoppeliensch zum Leitungsbündel hinter der Stufe \(s \) des Linksystems - identisch sind. Diese Identität ergibt sich natürlich auch für die Simulation, da auch dort für den ankommenden Externerverkehr "Punkt-Bündel-Wahl" vom Zelkkoppeliensch zum Leitungsbündel hinter der Stufe \(s \) des Linksystems zugrunde liegt, d.h. es ist \(b_{eg} = b_{ek} \). (Im Anhang wird diese Identität nochmals ausführlich gezeigt.)

In den Diagrammen 1 bis 5 werden für die Betriebsart 1 Ergebnisse für 2- und 4-stufige Linksysteme und Zufallsverkehr 1. Art bzw. 2. Art gezeigt.

Es zeigt sich eine gute Übereinstimmung der Ergebnisse des Nährerrungsverfahrens mit den Simulationsergebnissen.

Diagramm 1: \(\beta = f(Y_{ges/n_s}, d_{ges}) \) für Zufallsverkehr 1. Art (für einen internverkehrsanteil \(d_{ges} = 0; 0,5; 1 \).
Diagramm 2: Kurve (1): $b_1 = f(\gamma_{ges}/n_s; d_{ges} = 0,5)$
Kurve (2): $b_{eg} = b_{ek} = f(\gamma_{ges}/n_s; d_{ges} = 0,5)$ für ZV 1

Diagramm 2: $B = f(\gamma_{ges}/n_s; d_{ges})$ für ZV 2 und Wegsuchalgorithmus 1,
(für einen Internverkehranteil $d_{ges} = 0; 0,5; 1$).

Zwischenleitungen: zyklisch vertauscht aufgelegt;
Abuchen der Koppelvielfache: geordnet.
Diagramm 4: \(B = f(Y_{ges}/n_s, d_{ges}) \) für ZV 2 und Wegesuchalgorithmus 2,
(für einen Internverkehrsanteil \(d_{ges} = 0; 0,5; 1 \)).

Diagramm 5: \(B = f(Y_{ges}/n_s, d_{ges}) \) für ZV 1 (\(d_{ges} = 0; 0,5; 1 \))
*) Zwischenleitungen: Von Stufe 1 nach 2 geordnet aufgelegt,
von Stufe 2 nach 3 zyklisch vertauscht aufgelegt und von Stufe 3 nach 4 zyklisch vertauscht aufgelegt.
6. Betriebsart 2

6.1 Allgemeines

In diesem Abschnitt erfolgt eine Erweiterung des in Abschnitt IV.5 vorgestellten Näherungsverfahrens für eine 2. Betriebsart.

Diese Betriebsart 2 wird in Abschnitt 6.2 beschrieben.

In Abschnitt 6.3 werden die gegebenen Größen vorgestellt und in Abschnitt 6.4 wird auf die gesuchten charakteristischen Verkehrsgrößen eingegangen. Es werden hierbei jedoch im wesentlichen nur Beziehungen für jene Verlustwahrscheinlichkeiten angegeben, die sich gegenüber den Beziehungen von Betriebsart 1 unterscheiden.

In Abschnitt 6.7 werden einige Ergebnisse gezeigt.

6.2 Die Beschreibung der Betriebsart 2

Das Linksystem hat zwei Leitungsbündel hinter der Stufe s (vgl. Bild 17, rechtsseitige Ausgänge).

Das Leitungsbündel 1 führt den abgehenden Teil des Internverkehrs und den abgehenden Externverkehr, das Leitungsbündel 2 führt den ankommenden Teil des Internverkehrs und den ankommenden Externverkehr. D.h. eine Internverbindung belegt gleichzeitig auf jedem der beiden Leitungsbündel eine Leitung.

Linksysteme mit Betriebsart 2 werden z.B. in vielen modernen Vermittlungssystemen als Teilnehmerwahl-Koppelanordnung (Endwahl-Koppelanordnung) eingesetzt (siehe z.B. Kapitel IV.3, Bild 6).

6.3 Die gegebenen Größen

Gegeben sind die Strukturparameter des Linksystems und die Belastungen der verschiedenen Verkehre:

- Internbelastung Y_1: Diese Internbelastung teilt sich je zur Hälfte auf die beiden Leitungsbündel auf, d.h. Leitungsbündel 1 und 2 sind 'intern' je mit $Y_1/2$ belastet.

- abgehende Externbelastung Y_{eg}: Y_{eg} ist zusammen mit $Y_1/2$ die Belastung des Leitungsbündels 1.

- ankommende Externbelastung Y_{ek}: Y_{ek} ist zusammen mit $Y_1/2$ die Belastung des Leitungsbündels 2.

Die Gesamtbelastung ergibt sich zu:

$Y_{ges} = Y_1 + Y_{eg} + Y_{ek}$

Wird allgemein die Belastung Y_{sj} des Leitungsbündels j ($j=1,2$) eingeführt, so wird:

$Y_{s1} = Y_{ek} + Y_1/2$

$Y_{s2} = Y_{ek} + Y_1/2$

AUSGANG (IV.145)

Ausgehend von diesen Belastungen können entsprechend zu Abschnitt 5.3 (Betriebsart 1) alle interessierenden Belastungen des Linksystems berechnet werden (vgl. Gl. (IV.1) bis (IV.10)).
6.4 Die gesuchten charakteristischen Verkehrsgrößen

Es gelten die Gleichungen von Betriebsart 1 nach Abschnitt 5.4, wobei die Bündelblockierungen \([m_{1k}^1, m_{1k}^1, m_{eg}^1, m_{ek}^1]\) entsprechend dem Leitungsbündel, auf dem die jeweilige Verkehr geführt wird, berechnet werden. D.h. \([m_{1k}^1, m_{1k}^1]\) bei Betriebsart 1 werden ersetzt durch \([m_{1k}^1, m_{2k}^1]\) bei Betriebsart 2. Der Index der mittleren Prüfarkeit gibt das Leitungsbündel an, auf das sich die Berechnung der mittleren Prüfarkeit bezieht (vgl. Kapitel III.2.2.2).

Entsprechend wird \([m_{eg}^1]\) ersetzt durch \([m_{1k}^1]\) (der abgehende Externverkehr wird auf dem Leitungsbündel 1 geführt) und \([m_{ek}^1]\) wird ersetzt durch \([m_{2k}^1]\) (der ankommende Externverkehr wird auf dem Leitungsbündel 2 geführt).

Damit können die charakteristischen Größen analog wie bei Betriebsart 1 berechnet werden (vgl. Abschnitt 5.4).

Die Berechnung der externen Verlustwahrscheinlichkeiten erfolgt nach Abschnitt 5.4 (Betriebsart 1) Gl.(IV.11) und Gl.(IV.12), wobei \([m_{eg}^1]\) durch \([m_{1k}^1]\) und \([m_{ek}^1]\) durch \([m_{2k}^1]\) ersetzt wird.

Die kv-interne Verlustwahrscheinlichkeit \(b_k\)

Für \(b_{kg}\) (in abgehender Richtung) gilt Gl.(IV.13) von Betriebsart 1, wobei \([m_{1k}^1]\) durch \([m_{1k}^1]\) ersetzt wird. Diese Beziehung wird hier nochmals angegeben, jedoch wird hier der Einfachheit halber nicht zwischen den beiden Fällen "ohne Zwischenblockierung" bzw. "mit Zwischenblockierung" unterschieden, sondern es wird direkt die allgemeinere Beziehung mit Zwischenblockierung angegeben:

\[
b_{kg} = b_k^1 + \frac{k_{eg}^{11}}{k_{eg}^{11}} \cdot \left[1 - \frac{1}{\left(1 - [m_{1k}^1]_{bg}\right)\left(1 - [m_{1k}^1]_{ig}\right)} \right]
\] (IV.146)

Für die ankommende Verkehrsrichtung werden der Übersichtlichkeit halber die Verlustformeln für die Fälle ohne bzw. mit Zwischenblockierung getrennt angegeben (vgl. Gl.(IV.14)):

- ohne Zwischenblockierung:

\[
b_{kk} = k_{kk} b_k^1 \left(1-[m_{1k}^1]_{ig}\right) + \frac{k_{eg}^{11}}{k_{eg}^{11}} \cdot (1-[m_{1k}^1]_{ig}) \cdot [m_{2k}^1]_{ik}
\] (IV.147)

- mit Zwischenblockierung:

\[
b_{kk} = k_{kk} b_k^1 \left[1 - \sum_{v=2}^{\infty} \frac{(1-[m_{1k}^1]_{bg})(1-[m_{1k}^1]_{ig})}{k_{kk}^1} \right] + \frac{k_{eg}^{11}}{k_{eg}^{11}} \cdot \frac{1}{\sum_{v=2}^{\infty} \frac{(1-[m_{1k}^1]_{bg})(1-[m_{1k}^1]_{ig})}{k_{kk}^1} \cdot \left(1-[m_{1k}^1]_{bg}\right)}
\] (IV.147b)

Im Unterschied zu Gl.(IV.14) (in Abschnitt 5.4) wird hier in Gl.(IV.14) \([m_{1k}^1]\) ersetzt durch \([m_{2k}^1]\).

Die Bündelblockierung \([m_{1k}^1]\) in abnehmender Richtung in Gl.(IV.14) wird für den Fall berechnet, daß abgehender und ankommender Teil des Internverkehrs auf demselben Leitungsbündel geführt wird (Betriebsart 1). Hierbei ist in der Berechnung von \([m_{1k}^1]\) implizit enthalten, daß in abnehmender Richtung keine Bündelblockierung auftritt (vgl. Gl.(IV.47)). Da bei Betriebsart 2 die Bündelblockierung \([m_{1k}^1]\) in abnehmender Richtung unabhängig von der Bündelblockierung \([m_{1k}^1]\) in abnehmender Richtung ist (beide Blockierungen beziehen sich auf zwei verschiedene Leitungsbündel), ergibt sich in Gl.(IV.14) die Wahrscheinlichkeit, daß sowohl in abnehmender Richtung keine Bündelblockierung als auch in ankommender Richtung Bündelblockierung auftritt zu \([1-[m_{1k}^1]_{bg}[m_{2k}^1]_{ik}]\).

Die gesamte kv-interne Verlustwahrscheinlichkeit \(b_k\) ergibt sich nach Gl.(IV.15) zu:

\[
b_k = b_{kg} + b_{kk}
\]

Die systeminternen Verlustwahrscheinlichkeiten \(b_{sg}\) und \(b_{sk}\)

Die systeminternen Verlustwahrscheinlichkeiten in abnehmender Richtung berechnen sich entsprechend zu Gl.(IV.16), wobei \([m_{1k}^1]\) durch \([m_{1k}^1]\) ersetzt wird (die Beziehungen werden nur für den allgemeineren Fall "mit Zwischenblockierung" angegeben):

- System- und blockintern:

\[
b_{sg}^{(b)} = b_{sg} + \frac{k_{eg}^{11}}{k_{eg}^{11}} \cdot \left[1 - \sum_{v=2}^{\infty} \frac{(1-[m_{1k}^1]_{bg})(1-[m_{1k}^1]_{ig})}{k_{kk}^1} \cdot k_{kk}^1 \right]
\] (IV.147a)
- Systemintern aber nicht blockintern:

\[b_{\text{bg}} = s_{\text{bg}} b_1 + \frac{s_{\text{bg}} b_1}{s_{\text{A}}} [1 - \sum_{j=2}^{s-1} (1 - [m_{1j}]_{1g}) (1 - [m_{1j}]_{1g})] \quad \text{(IV.148b)} \]

Die systeminterne Verlustwahrscheinlichkeit in ankommander Richtung berechnet sich ohne Zwischenblockierung entsprechend zu Gl.(IV.147a), wobei wieder \([m_{1k}]_{1k}\) durch \((1 - [m_{1j}]_{1g})[m_{2}]_{1k}\) ersetzt wird (wie in Gl.(IV.147b)). Damit ergibt sich:

\[b_{\text{sk}} = \frac{s_{\text{sv}}}{s_{\text{A}}} \cdot (1 - [m_{1j}]_{1g}) + \frac{s_{\text{Cl}}}{s_{\text{A}}} \cdot (1 - [m_{1j}]_{1g})[m_{2}]_{1k} \quad \text{(IV.149a)} \]

(Gl.(IV.149a) gilt sowohl für den blockintern als auch den nicht-blockinternen Verkehr.)

Mit Zwischenblockierung muß wieder zwischen blockinternem und nicht-blockinternem Verlustanteil unterschieden werden, es gilt:

- blockintern:

\[b_{\text{sk}} = \frac{s_{\text{sv}}}{s_{\text{A}}} \cdot (1 - [m_{1j}]_{1g}) \quad \text{(IV.149b)} \]

- nicht-blockintern:

\[b_{\text{sk}} \text{ entsprechend zu Gl.(IV.149b), wobei } [m_{1j}]_{1g}, [m_{1j}]_{1g} \text{ und } [m_{1j}]_{1g} \text{ ersetzt wird durch } [m_{2}]_{1g}, [m_{2}]_{1g} \text{ und } [m_{2}]_{1g}. \]

Alle weiteren charakteristischen Größen werden entsprechend zu Abschnitt 5.4 (Betriebsart 1) berechnet.

6.5 Zufallsverkehr 1. Art

6.5.2 Allgemeines

Der Unterschied zwischen Betriebsart 1 und Betriebsart 2 wirkt sich im Rechenverfahren auf die Berechnung der Wahrscheinlichkeitsverteilungen \(p_j(x) \) und auf die Berechnung der Bündelblockierungen aus. In Abschnitt 6.5.2 werden die Wahrscheinlichkeitsverteilungen \(p_j(x) \) und in Abschnitt 6.5.3 werden die Bündelblockierungen für Betriebsart 2 berechnet.

Die Berechnung der Wahrscheinlichkeitsverteilung \(w(x) \) auf den \(k_1 \) Zwischenleitungen und die Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- bzw. Zielkoppelvielfachers erfolgt nach Abschnitt 5.5.4 und 5.5.5.

Ebenso erfolgt die Berechnung der Wahrscheinlichkeitsverteilung \(p_j(x) \) und der Zwischenblockierungen nach Abschnitt 5.5.6 und 5.5.7 (Betriebsart 1).

6.5.2 Die Wahrscheinlichkeitsverteilungen \(p_j(x) \) auf den Leitungsbündeln 1 und 2 hinter der Stufe \(s \) des Linkssystems

Bei der Betriebsart 2 belegt eine Internverbindung auf jedem der beiden Leitungsbündel hinter der Stufe \(s \) jeweils nur eine Leitung, d.h. der Internverkehr verhält sich bezogen auf ein einzelnes Leitungsbündel wie der Externverkehr.

Damit ergibt sich für das Leitungsbündel \(j \) \((j=1,2):\)

\[p_j(x+2) = e^{\hat{a}_{osj}} x+2 p_j(x+1) + \frac{1}{x+2} e^{\hat{a}_{osj}} p_j(x+1) \]

hierbei ist für \(j = 1: e^{\hat{a}_{osj}} = s_{\text{bg}}^{j} \) und für \(j = 2: e^{\hat{a}_{osj}} = s_{\text{sv}}^{j} \).

Mit \(\hat{a}_{osj} = e^{\hat{a}_{osj}} + 1^{\hat{a}_{osj}} \) ergibt sich:

\[p_j(x+2) = \frac{\hat{a}_{osj}}{x+2} p_j(x+1) \quad \text{(IV.150)} \]

mit der Randbedingung: \(\sum_{x=0}^{\infty} p_j(x) = 1 \)
Für die Belastung $Y_{8,j}$ des Leitungsbündels j gilt:

$$ Y_{8,j} = n_{OS,j} \left(1 - p_j(n_{8,j})\right) $$ \hspace{1cm} (IV.151)

$Y_{8,j}$ ergibt sich für $j = 1$ b.w. $j = 2$ nach Gl. (IV.145).

Der Anfangswert für das fiktive Angebot wird:

$$ n_{OS,j0} = Y_{8,j} $$ \hspace{1cm} (IV.152)

Mit den Beziehungen nach Gl. (IV.150) bis (IV.152) werden iterativ die Zustandswahrscheinlichkeiten $p_j(x)$ ($j=1,2$) berechnet (vgl. Abschnitt 5.5.2).

6.5.2 Die Bündelblockierungen

6.5.2.1 Extern abgehend

Für den abgehenden Externverkehr gilt (vgl. Gl. (IV.44)):

$$ [m_1]_{E} = \sum_{x=0}^{n_{12}} p_1(x) \cdot G_1(x) $$ \hspace{1cm} (IV.153)

6.5.2.2 Extern ankommend

Der ankommende Externverkehr wird auf dem Leitungsbündel 2 geführt, damit gilt (vgl. Gl. (IV.45)):

$$ [m_2]_{E} = \sum_{x=0}^{n_{12}} p_2(x) \cdot G_2(x) $$ \hspace{1cm} (IV.154)

6.5.3 Intern

Für den abgehenden Teil des Internverkehrs gilt (vgl. Gl. (IV.46)):

$$ [m_1]_{I} = \sum_{x=0}^{n_{14}} p_1(x) \cdot G_1(x) $$ \hspace{1cm} (IV.155)

Der ankommende Teil des Internverkehrs wird auf dem Leitungsbündel 2 geführt, d.h. bei der Berechnung der Bündelblockierung des Internverkehrs in ankommender Richtung muß von der mittleren Prüfbarkeit m_2 des Leitungsbündels 2 ausgegangen werden.

Die Berechnung der Bündelblockierung des ankommender Internverkehrs erfolgt unter der Näherungsannahme, daß die Bündelblockierungen des Internverkehrs in abgehender und in ankommender Richtung voneinander unabhängig sind. Damit wird:

$$ [m_2]_{I} = \sum_{x=0}^{n_{12}} p_2(x) \cdot G_2(x) $$ \hspace{1cm} (IV.156)

Die hier betrachteten Linksysteme mit Betriebsart 2 und mit den in Abschnitt 3.1 gemachten Voraussetzungen werden in der Praxis niemals mit reinem Internverkehr sondern immer mit gemischtem Intern- und Externverkehr betrieben. Aus diesem Grund ist die in Gl. (IV.156) implizierte Unabhängigkeit der Wahrscheinlichkeitsverteilungen $p_1(x)$ und $p_2(x)$ gerechtfertigt.

6.6 Zufallsverkehr 2. Art

6.6.1 Allgemeines

Bei Zufallsverkehr 2. Art wirkt sich der Unterschied zwischen Betriebsart 1 und 2 ebenfalls auf die Berechnung der Wahrscheinlichkeitsverteilung $p_1(x)$ (siehe Abschnitt 6.6.2) aus. Die Berechnung der Bündelblockierungen erfolgt gemäß Abschnitt 6.5.3.

Die Berechnung der Wahrscheinlichkeitsverteilung $w(x)$ auf den k_1 Zwischenleitungen und die Berechnung der Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- bzw. Zielkoppelvielfach erfolgt nach Abschnitt 5.6.6 und 5.6.7.

Die Berechnung von $p_1(x)$ und die Berechnung der Zwischenblockierungen erfolgt für ZV 2 nach Abschnitt 5.6.8 und 5.6.9.
6.6.2 Die Wahrscheinlichkeitsverteilungen \(p_j(x) \) auf den Leitungsbündeln 1 und 2

Zur Bestimmung der Zustandswahrscheinlichkeiten \(p_j(x) \) muss zunächst die Quellenzahl für das Leitungsbündel \(j \) berechnet werden.

Als \(q_j \) wird die mittlere Anzahl freier Quellen bezeichnet, welche Anrufe für das Leitungsbündel \(j \) erzeugen. Allgemein gilt:

\[
q_j = Q - \sum_{Y_{sX}}^{R} Y_{sX}
\]

Hierbei ist:

\(Q = g_1 \cdot g_1 \): die Gesamtzahl aller Quellen des betrachteten Linksystems.
\(R \): Die Anzahl der Leitungsbündel (hier bei Betriebsart 2 ist \(R = 2 \)).
\(Y_{sX} \): die Belastung des Leitungsbündels \(X \).

Bei der Betriebsart 2 ist die Anzahl der Leitungsbündel \(R = 2 \). Damit wird:

\[q_1 = Q - Y_{s2} \]

und

\[q_2 = Q - Y_{s1} \]

mit \(Y_{s1} \) und \(Y_{s2} \) nach Gl.(IV.145).

Damit ergibt sich die Rekursionsformel zur Berechnung von \(p_j(x) \):

\[
p_j(x+2) = \sum_{y=0}^{Q_j-x+1} (Q_j-x) p_j(x+1) Q_j-x+1 \frac{1}{Q} + \sum_{x=0}^{Q_j-x+1} e^{-\alpha s_j} \frac{Q_j-x+1}{x+2} \frac{1}{Q} p_j(x+1) Q_j-x+1
\]

Hierbei ist:

\(Q_j-x+1 \): Ws., dass der gerufene Teilnehmer (einer von \(Q \)) bei Einfall eines Internrufes im Zustand \(x+1 \) frei ist.

Für die externe Anrufrate gilt:

\[
J = 1 : e^{-\alpha s_1} = e^{-\alpha_{s1}}
\]

\[
J = 2 : e^{-\alpha s_2} = e^{-\alpha_{s2}} = e^{-\alpha_{s1}} Q
\]

(vgl. Abschnitt 5.6.4).

Die externe Belastung des Leitungsbündels \(j \) ergibt sich zu:

\[
e^{-\alpha s_j} = (Q - Y_{ges}) (1 - e^{-\alpha s_j})
\]

Hierauf gilt für die externe Verlustwahrscheinlichkeit \(e^{-\alpha s_j} \) des vollkommen erreichbaren Leitungsbündels \(j \) (die Verlustwahrscheinlichkeit für den abgehenden Externverkehr ist gleich der Verlustwahrscheinlichkeit des ankommenen Externverkehrs):

\[
e^{-\alpha s_j} = \frac{Q_j - Y_{s_j}}{Q_j - Y_{s_j}} p_j(n_{s_j})
\]

mit \(Y_{s1} = e^{-\alpha s_1} \) und \(Y_{s2} = e^{-\alpha s_2} \).

Für die Belastung des Internverkehrs gilt:

\[
Y_{s_j} = \frac{1}{2} \left(1 - e^{-\alpha s_j} \right)
\]

Die interne Verlustwahrscheinlichkeit \(e^{-\alpha s_j} \) des vollkommen erreichbaren Leitungsbündels \(j \) ist (jeder Internruf belegt wie ein Externruf je Leitungsbündel nur eine Leitung):

\[
\sum_{x=0}^{Q_j-x+1} (Q_j-x) p_j(x) (Q_j-x+1)
\]

Hierbei kann mit Gl.(IV.158) bis (IV.162) \(p_j(x) \) für \(j = 1,2 \) iterativ berechnet werden.

Mit diesen \(p_j(x) \) werden die Bündelblockierungen nach Abschnitt 6.5.3 berechnet.
6.7 Ergebnisse

In Diagramm 6 bis 12 werden für Betriebsart 2 die mit dem Näherrungsverfahren ermittelten Ergebnisse Simulationsergebnissen gegenübergestellt.

Die Ergebnisse des Näherrungsverfahrens sind mit einer durchgezogenen Linie gezeichnet. Die Simulationsergebnisse sind mit ihrem Vertrauensintervall und einer statistischen Aussagesicherheit von 95% durch 1 dargestellt.

Es werden Ergebnisse für 2-, 3- und 4-stufige Linksysteme und Zufallsverkehr 1. Art bzw. 2. Art gezeigt.

Die Ergebnisse des Näherrungsverfahrens stimmen sehr gut mit den Simulationsergebnissen überein.

Diagramm 6: \(B = f(Y_{ges} / (n_{s1} + n_{s2}), d_{ges}) \) für ZV 1 (\(d_{ges} = 0; 0.5 \))

\(Y_{ges} = Y_{s1} / n_{s1} = Y_{s2} / n_{s2} = Y_{ges} / (n_{s1} + n_{s2}) \).
Diagramm 7: (1) $b_1 = f(Y_{ges}/(n_{s1}+n_{s2}), d_{ges}=0,5)$ für ZV 1
(2) $b_{eg}=b_{ek}=f(Y_{ges}/(n_{s1}+n_{s2}), d_{ges}=0,5)$

$(Y_{s1}/n_{s1} = Y_{s2}/n_{s2} = Y_{ges}/(n_{s1}+n_{s2}))$.

Diagramm 8: $B = f(Y_{ges}/(n_{s1}+n_{s2}), d_{ges} = 0; 0,5)$ für ZV 2 und Wegensuchalgorithmus 1 ($Y_{s1}/n_{s1} = Y_{s2}/n_{s2} = Y_{ges}/(n_{s1}+n_{s2})$).
Diagramm 2: $B = f(Y_{ges}/(n_{s1}+n_{s2}), d_{ges} = 0; 0,5)$ für ZV 2 und Wegensuchalgorithmus 2 ($Y_{s1}/n_{s1} = Y_{s2}/n_{s2} = Y_{ges}/(n_{s1}+n_{s2})$).

Diagramm 10: (1): $b_1 = f(Y_{ges}/(n_{s1}+n_{s2}), d_{ges}=0,5)$ für ZV 2 und Wegensuchalgorithmus 2.
(2): $b_{eg} = b_{ek} = f(Y_{ges}/(n_{s1}+n_{s2}), d_{ges}=0,5)$
($Y_{s1}/n_{s1} = Y_{s2}/n_{s2} = Y_{ges}/(n_{s1}+n_{s2})$).

Zwischenleitungen zwischen sämtlichen Stufen geordnet aufgelegt.
Absuchen der Koppelvielfache in Stufe 1: zufällig; in Stufe 2 bzw. 3: geordnet.

Zwischenleitungen zwischen sämtlichen Stufen geordnet aufgelegt.
Absuchen der Koppelvielfache in Stufe 1: zufällig; in Stufe 2 bzw. 3: geordnet.
Zwischenleitungen: Von Stufe 1 nach 2 geordnet aufgelegt, von Stufe 2 nach 3 bzw. Stufe 3 nach 4 zyklisch vertauscht aufgelegt.

Absuchen der Koppelvielfache in Stufe 1: zufällig; in Stufe 2, 3 und 4: geordnet.

Diagramm 11: \(B = f\left(\frac{Y_{ges}}{n_{s1}+n_{s2}}\right), d_{ges} = 0,5\) für ZV 1
\(\left(\frac{Y_{s1}}{n_{s1}} = \frac{Y_{s2}}{n_{s2}} = \frac{Y_{ges}}{n_{s1}+n_{s2}}\right)\)

Diagramm 12: (1): \(b_1 = f\left(\frac{Y_{ges}}{n_{s1}+n_{s2}}\right), d_{ges} = 0,5\)
(2): \(b_{eg} = b_{ek} = f\left(\frac{Y_{ges}}{n_{s1}+n_{s2}}, d_{ges} = 0,5\right)\)
\(\left(\frac{Y_{s1}}{n_{s1}} = \frac{Y_{s2}}{n_{s2}} = \frac{Y_{ges}}{n_{s1}+n_{s2}}\right)\)
7. Betriebsart 3 und 4

7.1 Allgemeines

In diesem Abschnitt 7 werden zwei weitere Betriebsarten behandelt. Diese beiden Betriebsarten sind bezüglich ihrer Berechnung sehr ähnlich, da bei beiden der Internverkehr in derselben Weise geführt wird. Deshalb werden diese Betriebsarten zusammen in einem Abschnitt behandelt.

Diese Betriebsarten 3 und 4 werden in Abschnitt 7.2 beschrieben.

Die weiteren Abschnitte sind im wesentlichen wie bei der Beschreibung von Betriebsart 2 gegliedert. Da sehr viele Beziehungen gleich wie bei der Betriebsart 1 bzw. 2 sind, wird in den einzelnen Abschnitten nur das Wesentliche wiederholt und es werden nur die Beziehungen hergeleitet, die sich von den entsprechenden Beziehungen der Betriebsart 1 bzw. 2 unterscheiden.

In Abschnitt 7.3 werden die gegebenen Größen vorgestellt.

In Abschnitt 7.4 wird kurz auf die gesuchten charakteristischen Verkehrswegrößen eingegangen.

Die zur Betriebsart 1 bzw. 2 unterschiedlichen Beziehungen für Zufallsverkehr 1. Art bzw. Zufallsverkehr 2. Art werden in Abschnitt 7.5 bzw. 7.6 hergeleitet. Der Unterschied besteht hierbei wieder in der Berechnung der Wahrscheinlichkeitsverteilungen $P_j(x)$ bzw. in der Berechnung der Bündelblockierungen.

In Abschnitt 7.7 werden einige Ergebnisse gezeigt.

7.2 Die Beschreibung der Betriebsart 3 und 4

7.2.1 Betriebsart 3 (eine Externrichtung)

Bild 18: s-stufiges Linksystem mit Betriebsart 3

Das Linksystem hat drei Leitungsbündel hinter der Stufe s (vgl. Bild 18, rechtsseitige Ausgänge).

Der Internverkehr wird auf den Leitungsbündeln 1 und 2 geführt. Hierbei führt das Leitungsbündel 1 nur den abgehenden Teil des Internverkehrs, das Leitungsbündel 2 führt nur den ankommenden Teil des Internverkehrs. Wie bei der Betriebsart 2 belegt also jede Internverbindung auf den Leitungsbündeln 1 und 2 jeweils eine Leitung. Die Anzahl der Leitungen dieser beiden Bündel ist immer gleich groß ($n_{s1} = n_{s2}$), da die Zahl der intern abgehenden Leitungen immer gleich der Zahl der intern ankommenden Leitungen ist.

Der abgehende und ankommende Externverkehr wird auf dem Leitungsbündel 3 geführt. Hierbei kann bei der Wegesuche von jedem abgehenden bzw. ankommenden Externverkehr jede der n_{s3} Leitungen auf frei oder belegt geprüft werden.

Linksysteme mit Betriebsart 3 können z.B. in modernen Nebenstellenanlagen eingesetzt werden (siehe Bild 19).

In einer solchen Nebenstellenanlage nach Bild 19 werden - vor-
aussetzungsgemäß - der abgehende und ankommende Teil der Intern-
verbindung bzw. der Externverkehr über eine zusätzliche (in Bild 19
gestrichelt gezeichnete) einstufige, vollkommen erreichbare
Kuppelanordnung miteinander verbunden (bzw. eine mehrstufige Kop-
pelanordnung mit vernachlässigbar kleinem Verlust; vgl. Abschnitt
IV.3). Die Durchschaltung des ankommenden Weges der Internver-
bindung bzw. der ankommenden Externverbindung erfolgt dann kon-
jugiert vom gerufenen Teilnehmer zu einem bestimmten - vom ab-
gehenden Teil der Internverbindung bzw. vom ankommenden Exter-
verkehr bereits markierten - Innenverbindungssatz IVS bzw. Ex-
ternverbindungssatz EVS. Da aber die zusätzliche Kuppelanordnung
praktisch vollkommene Erreichbarkeit hat, entspricht diese
"Punkt-Punkt-Wahl" über s+1 Koppelstufen der in vorliegenden
Näherungsverfahren zugrunde gelegten Bündelwahl über s Koppel-
stufen.

(Die rechnerische Behandlung wird in den Abschnitten 7.3 bis 7.6
durchgeführt.)

Das Linksystem hat 4 Leitungsbündel hinter der Stufe s (vgl.
Bild 20, rechtsseitige Ausgänge).

Leitungsbündel 1 und 2 führen wie bei der Betriebsart 3 den In-
ternverkehr. Das Leitungsbündel 3 führt ausschließlich abgehenden
Externverkehr und das Leitungsbündel 4 führt ausschließlich ank-
kommenden Externverkehr.

Im Gegensatz zu Betriebsart 3 wird hier also abgehender und an-
kommender Externverkehr auf zwei getrennten Bündeln geführt.

(Die rechnerische Behandlung wird in den Abschnitten 7.3 bis 7.6
durchgeführt.)
7.2.3 Linksyste me mit drei Exte rnrichtungen

<table>
<thead>
<tr>
<th>Stufe 1</th>
<th>s</th>
<th>R = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_61</td>
<td>: abgehender Internverkehr</td>
<td></td>
</tr>
<tr>
<td>n_62</td>
<td>: ankommender Internverkehr</td>
<td></td>
</tr>
<tr>
<td>n_63</td>
<td>: abgehender Externverkehr</td>
<td></td>
</tr>
<tr>
<td>n_64</td>
<td>: ankommender Externverkehr</td>
<td></td>
</tr>
<tr>
<td>n_65</td>
<td>: abgehender und ankommender Externverkehr</td>
<td></td>
</tr>
</tbody>
</table>

Bild 21: Linksyste me mit drei Externrichtungen.

Der Vollständigkeit halber wird hier noch eine Betriebsart erwähnt, bei der das Linksyste m drei Externrichtungen besitzt.

In diesem Fall hat das Linksyste m 5 Leitungsbündel hinter der Stufe s (vgl. Bild 21, rechtseitige Ausgänge).

Die Leitungsbündel 1 und 2 führen wieder den Internverkehr.

Das Leitungsbündel 3 bzw. 4 führt wie in Abschnitt 7.2.2 (Betriebsart 4) abgehenden bzw. ankommenden Externverkehr.

Zusätzlich ist hier noch ein 5-Leitungsbündel vorhanden, das wie das Leitungsbündel 3 bei der Betriebsart 3 (nur eine Externrichtung) sowohl abgehenden als auch ankommenden Externverkehr führt.

7.2.4 Gegenüberstellung der Betriebsarten mit 1, 2 bzw. 3 Externrichtungen

In den vorhergehenden Abschnitten 7.2.1 bis 7.2.3 wurden 3 Möglichkeiten gezeigt, den abgehenden und ankommenden Externverkehr zu führen.

Vom verkehrs-theoretischen Standpunkt aus ist natürlich Betriebsart 3 mit nur einer Externrichtung (Abschnitt 7.2.1) die beste Lösung, da die Zusammenfassung des Verkehrs auf nur ein Leitungsbündel, bezüglich der Belastbarkeit bei vorgeschriebener Verlustwahrscheinlichkeit, immer günstiger ist als die Aufteilung des Verkehrs auf mehrere Bündel (Bündelungsgewinn).

Werden solche Linksyste me jedoch in Nebenstellenanlagen eingesetzt, dann ist an jede Externleitung eine sogenannte Amtsübertragung (AUe) angeschlossen (entspricht dem Externverbundungssatz EVS in Bild 19). Diese AUe stellt die Anpassung, d.h. Schnittstelle, zwischen Nebenstellenanlage und öffentlichem Netz dar.

Wird auf einem Leitungsbündel sowohl abgehender als auch ankommender Externverkehr geführt, so wird für jede Leitung hinter der Stufe s des Linksyste ms (vgl. Bild 18, rechtseitige Ausgänge des Leitungsbündels 3) eine doppeltgerichtete Amtsübertragung AUe(g-k) benötigt. Diese AUe(g-k) muß sowohl für den abgehenden als auch den ankommenden Externverkehr zur Verfügung stehen.

Die Leitungen eines Bündels, das ausschließlich abgehenden Externverkehr führt (vgl. Bild 20, Leitungsbündel 3), benötigen Amtsübertragungen für den abgehenden Verkehr AUe(g); entsprechend benötigen die Leitungen, die nur ankommenden Externverkehr führen (vgl. Bild 20, Leitungsbündel 4), Amtsübertragungen für den ankommenden Verkehr AUe(k).

Die Anforderungen an die AUe's sind je nach ihrer Betriebsweise, abgehend und ankommend, nur abgehend oder nur ankommend, verschieden.

Alle Amtsübertragungen gemeinsam ist die Aufgabe der galvanischen Trennung der Nebenstellenanlage und des Amts, sowie der Übertragung von Schaltkennzeichen.

Die AUe(g) für den abgehenden Verkehr ist am einfachsten, sie hat im wesentlichen nur die Aufgabe der Umsetzung und Übermittlung der Wählimpulse von der Nebenstellenanlage zum Amt.

Die AUe(k) für den ankommenden Verkehr ist wesentlich komplizierter, da sie eine Vielzahl von Aufgaben zu bewältigen hat.
Einige dieser Aufgaben sollen hier stichwortartig genannt werden:

- Rückfrageumsteuerung,
- Durchschaltung auf Vermittlungsplatz bzw. direkte Durchwahl,
- besondere Schutzmaßnahmen gegen Doppelbelegungen und Fehlverbindungen u. s. w.

Die doppeltgerichtete Amteübertragung \(A_{\text{UE}}(g-k) \) muß sowohl die Aufgaben der \(A_{\text{UE}}(g) \) als auch die Aufgaben der \(A_{\text{UE}}(k) \) bewältigen können, die \(A_{\text{UE}}(g-k) \) ist also schaltungs-technisch am kompliziertesten. D.h. die Kosten für eine \(A_{\text{UE}}(g-k) \) sind größer als die Kosten für eine \(A_{\text{UE}}(k) \) bzw. \(A_{\text{UE}}(g) \).

Deshalb kann es z.B. günstiger sein, trotz der verkehrstheoretischen Nachteile, die Betriebsart 4 mit zwei Externrichtungen zu realisieren. Es muß hierbei zwischen den Leitungskosten und den Kosten für die \(A_{\text{UE}}'s \) abgewogen werden.

Im folgenden wird Betriebsart 3 (ein Externbündel mit doppeltgerichtetem Betrieb) und Betriebsart 4 (zwei Externbündel, kom- mend bzw. gehend) rechnerisch behandelt.

7.3 Die gegebenen Größen (Betriebsart 3 und 4)

Gegeben sind die Strukturparameter des Linksystems und die verschiedenen Verkehrsbelastungen:

- Internbelastung \(Y_1 \) : \(Y_1 \) ist die Belastung der beiden Leitungsbündel 1 und 2, d.h. jedes dieser Leitungsbündel hat die Belastung \(Y_1/2 \).

- abgehende Externbelastung \(Y_{eg} \) : Betriebsart 3 (eine Externrichtung): \(Y_{eg} \) ist die Belastung des Leitungsbündels 3 (vgl. Abschnitt 7.2.1).

- ankommende Externbelastung \(Y_{ek} \) : Betriebsart 4 (zwei Externrichtungen): \(Y_{ek} \) ist die Belastung des Leitungsbündels 3; \(Y_{ek} \) ist die Belastung des Leitungsbündels 4 (vgl. Abschnitt 7.2.2).

- Gesamtbelastung \(Y_{\text{ges}} = Y_1 + Y_{eg} + Y_{ek} \)

Ausgehend von diesen Belastungen können entsprechend zu Abschnitt 5.3 (Betriebsart 1) alle interessierenden Belastungen berechnet werden (vgl. Gl. (IV.1) bis (IV.10)).

7.4 Die gesuchten charakteristischen Verkehrsgrößen

Es gelten die Beziehungen von Betriebsart 1 nach Abschnitt 5.4 (Gl. (IV.11) bis (IV.38)), hierbei wird:

\[
- \begin{bmatrix} m_{1g} \\ m_{1k} \\ m_{eg} \end{bmatrix} \text{ ersetzt durch } \begin{bmatrix} m_{1g} \\ m_{1k} \\ m_{eg} \end{bmatrix} \\
\text{ (vgl. Abschnitt IV.6, Betriebsart 2)}
\]

\[
- \begin{bmatrix} m_{1g} \\ m_{1k} \\ m_{eg} \end{bmatrix} \text{ ersetzt durch } \begin{bmatrix} m_{1g} \\ m_{1k} \\ m_{eg} \end{bmatrix} \\
\text{ (Der abgehende Externverkehr wird sowohl bei Betriebsart 3 als auch bei Betriebsart 4 auf dem Leitungsbündel 3 geführt (vgl. Abschnitt 7.2.1 und 7.2.2)).}
\]

\[
- \begin{bmatrix} m_{ek} \end{bmatrix} \text{ ersetzt durch } \begin{bmatrix} m_{ek} \\ m_{ek} \end{bmatrix} \\
\text{ bei Betriebsart 3}
\]

\[
- \begin{bmatrix} m_{4ek} \end{bmatrix} \text{ bei Betriebsart 4.}
\]

7.5 Zufallsverkehr 1. Art

7.5.1 Allgemeines

Der Unterschied zwischen Betriebsart 1 bzw. 2 und Betriebsart 3 und 4 wirkt sich im Rechenverfahren nur auf die Berechnung der Wahrscheinlichkeitsverteilung \(p_k(x) \) auf den Leitungsbündeln hinter der Stufe \(s \) des Linksystems und auf die Berechnung der Bündelblockierungen aus. Die Beziehungen hierfür werden in den Abschnitten 7.5.2 und 7.5.3 hergeleitet.

Die Berechnung der Wahrscheinlichkeitsverteilung \(w(x) \) auf den \(k \)-Zwischenleitungen und die daraus resultierenden Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- bzw. Zielkoppelvielfaches erfolgt nach Abschnitt 5.5.4 und 5.5.5.

Ebenso erfolgt die Berechnung der Wahrscheinlichkeitsverteilung \(p_k(x) \) und die Berechnung der Zwischenblockierungen nach Abschnitt 5.5.6 und 5.5.7.
7.5.2 Die Wahrscheinlichkeitsverteilungen \(p_i(x) \) auf den Leitungsbündeln hinter der Stufe \(s \) des Linkelements

7.5.2.1 Leitungsbündel 1 und 2

Wie bereits in Abschnitt 7.2 dargestellt, wird bei den beiden Betriebsarten 3 und 4 der abgehende Teil des Internerverkehrs auf dem Leitungsbündel 1 und der ankommende Teil auf dem Leitungsbündel 2 geführt. Jede Belegung auf dem Bündel 1 bewirkt also auch eine Belegung auf dem Bündel 2. D.h. die Wahrscheinlichkeitsverteilungen \(p_1(x) \) und \(p_2(x) \) müssen gleich sein (\(n_{s_1} = n_{s_2} \)); es gilt:

\[
p_1(x) = p_2(x) = p_{1,2}(x).
\]

Damit ergibt sich:

\[
p_{1,2}(x+2) = \frac{1^{\Delta OS}}{x+2} p_{1,2}(x+1)
\]

mit der Randbedingung (\(n_{s_1}=n_{s_2} \)):

\[
\sum_{x=0}^{n_{s_1}} p_{1,2}(x) = 1
\]

Die Belastung auf den beiden Leitungsbündeln 1 und 2 ist jeweils \(Y_{1/2} \), damit gilt die Beziehung (vgl. Gl. (IV.151)):

\[
\frac{Y_{1/2}}{2} = 1^{\Delta OS}(1 - p_{1,2}(n_{s_1}))
\]

Der Anfangswert \(1^{\Delta OS} \) ist:

\[
1^{\Delta OS} = \frac{Y_{1/2}}{2}
\]

Mit den Beziehungen nach Gl. (IV.163) bis (IV.165) werden iterativ die \(p_{1,2}(x) \) berechnet (vgl. Abschnitt 5.5.2).

7.5.2.2 Leitungsbündel 3; Betriebsart 3 (eine Externrichtung)

Bei Betriebsart 3 mit einer Externrichtung wird auf dem Leitungsbündel 3 sowohl abgehender als auch ankommender Externverkehr geführt (vgl. Abschnitt 7.2.1).

Die Rekursionsformel zur Berechnung von \(p_3(x) \) wird mit \(e^{\Delta OS} = e^{\Delta OS} + e^{\Delta OS} \):

\[
p_3(x+2) = \frac{e^{\Delta OS}}{x+2} p_3(x+1)
\]

mit der Randbedingung:

\[
\sum_{x=0}^{n_{s_3}} p_3(x) = 1
\]

Die Belastung auf dem Leitungsbündel 3 ist \(Y_e = Y_{eg} + Y_{ek} \). Es gilt:

\[
Y_e = e^{\Delta OS}(1 - p_3(n_{s_3}))
\]

Der Anfangswert \(e^{\Delta OS} \) ist:

\[
e^{\Delta OS} = Y_e
\]

Mit Gleichung (IV.166) bis (IV.168) kann \(p_3(x) \) iterativ bestimmt werden, die wahrscheinlichkeitsverteilung \(p_3(x) \) ist eine Erlang-Verteilung.

7.5.2.3 Leitungsbündel 3 und 4; Betriebsart 4 (zwei Externrichtungen)

Bei der Betriebsart 4 führt das Leitungsbündel 3 nur abgehenden Externverkehr und das Leitungsbündel 4 nur ankommenden Externverkehr (vgl. Abschnitt 7.2.2).

Der Rechenalgorithmus entspricht dem von Abschnitt 7.5.2.2, jedoch wird bei der Berechnung von \(p_3(x) \):

\[
y_e \text{ ersetzt durch } y_{eg}
\]

und \(e^{\Delta OS} \) ersetzt durch \(e^{\Delta OS} \).

Beider Berechnung von \(p_4(x) \) wird:

\[
y_e \text{ ersetzt durch } y_{ek},
\]

\(e^{\Delta OS} \) ersetzt durch \(e^{\Delta OS} \) und \(n_{s_3} \) ersetzt durch \(n_{s_4} \).
7.5.3 Die Bündelblockierungen

7.5.3.1 Extern abgehend

Der abgehende Externverkehr wird sowohl bei Betriebsart 3 (eine Externrichtung) als auch bei Betriebsart 4 (zwei Externrichtungen) auf dem Leitungsbündel 3 geführt, deshalb gilt (vgl. Gl. (IV.44)):

\[
[m]_{\text{eg}} = \sum_{x=m_3}^{n_3} p_3(x) \cdot G_3(x) \quad \text{(IV.169)}
\]

7.5.3.2 Extern ankommend

Es gilt:

\[
[m]_{\text{ek}} = \sum_{x=m_3}^{n_3} p_3(x) \cdot G_3(x) \quad \text{(IV.170)}
\]

Für den Index \(j\) in Gl. (IV.170) gilt:

\(j = 3\) für Betriebsart 3 mit einer Externrichtung,
\(j = 4\) für Betriebsart 4 mit zwei Externrichtungen.

7.5.3.3 Intern

Entsprechend zu Gl. (IV.46) gilt für die interne Bündelblockierung in abgehender Richtung:

\[
[m]_{\text{ig}} = \sum_{x=m_3}^{n_3} p_1(x) \cdot G_1(x) \quad \text{(IV.171)}
\]

Für die interne Bündelblockierung in ankommender Richtung gilt:

\[
[m]_{\text{ik}} = \sum_{x=m_3}^{n_3} p_2(x) \cdot G_2(x) = \sum_{x=m_3}^{n_3} p_2(x) (1 - G_1(x)) \cdot G_2(x) \quad \text{(IV.172)}
\]

Interne Bündelblockierung in ankommender Richtung kann im Zustand \(\{x\}\) des Bündels 2 und damit auch des Bündels 1 \((p_1(x) = p_2(x) = p_{1,2}(x))\) nur auftreten, wenn in abgehender Richtung keine Bündelblockierung \((\mu_1(x) = 1 - G_1(x))\) aufgetreten ist. Im Zustand \(\{n_{s1} = n_{s2}\}\) tritt in ankommender Richtung keine Bündelblockierung auf, da sich in diesem Zustand immer Bündelblockierung in abgehender Richtung ereignet.

Für die beiden Leitungsbündel 1 und 2 gilt: \(m_1 = m_2, G_1(x) = G_2(x)\).

Die internen Verlustwahrscheinlichkeiten werden mit den Gleichungen von Betriebsart 1 nach Abschnitt 5.4 berechnet, da hier in \([m]_{\text{ik}}\) implizit enthalten ist, daß in abgehender Richtung keine Bündelblockierung auftritt (vgl. \([m]_{\text{ik}}\) bei Betriebsart 1).

7.6 Zufallsverkehr 2. Art

7.6.1 Allgemeines

Auch bei Zufallsverkehr 2. Art wirkt sich der Unterschied zwischen Betriebsart 1 bzw. 2 und den Betriebsarten 3 und 4 nur in der Berechnung der Wahrscheinlichkeitsverteilungen \(p_3(x)\) aus. Die Berechnung der Bündelblockierungen erfolgt nach Abschnitt 7.5.3.

Die Berechnung der Wahrscheinlichkeitsverteilung \(w(x)\) auf den \(k_1\) Zwischenleitungen, der Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- bzw. Zielkoppelvielsachs, der Wahrscheinlichkeitsverteilung \(p_1(x)\) und der Zwischenblockierungen erfolgt nach Abschnitt 5.6.6 bis 5.6.9, deren Berechnung wird also nicht von der Betriebsart beeinflußt.

7.6.2 Die Wahrscheinlichkeitsverteilungen \(p_1(x)\) auf den Leitungsbündeln hinter der Stufe \(s\) des Linksystems

7.6.2.1 Leitungsbündel 1 und 2

Wie bereits in Abschnitt 7.5.2.1 ausgeführt, ist bei Betriebsart 3 und 4 \(p_1(x) = p_2(x) = p_{1,2}(x)\). Die Berechnung dieser Wahrscheinlichkeitsverteilung wird im folgenden für das Leitungsbündel 1 hergeleitet. Da in jedem Zustand \(\{x\}\) des Leitungsbündels 1 sich auch das Leitungsbündel 2 im Zustand \(\{x\}\) befindet, wird für die Berechnung von \(p_{1,2}(x)\) der Erwartungswert \(\mu_{1,2}\) der Quellenzahl für beide Leitungsbündel 1 und 2 benützt:

\[
\mu_{1,2} = \sum_{x=3}^{n_3} Y_{sy} \quad \text{(IV.173)}
\]

mit \(R = 3\) bei Betriebsart 3
und \(R = 4\) bei Betriebsart 4.
In diesem Fall wird also von der Gesamtquellenzahl Q nur die Belastung der Externbündel abgezogen.

Von den \(Q_{1,2} \) im Mittel auf das Leitungsbündel 1 und 2 wirkenden Quellen sind im Zustand \(x \) jedes der beiden Bündel \((Q_{1,2} - 2x) \) Quellen frei. Damit ist für das Leitungsbündel 1 im Zustand \(x \) die fiktive Anfrustrate:
\[
\lambda_{os}^{1}(Q_{1,2} - 2x)
\]
Ein Übergang von Zustand \(x \) in den Zustand \(x+1 \) findet im Leitungsbündel 1 (bzw. 2) nur dann statt, wenn der vorbereitete Teilnehmer frei ist. Die Wahrscheinlichkeit hierfür ist bei Einfall eines Internrufes im Zustand \(x \) der beiden Leitungsbündel:
\[
\frac{Q_{1,2} - (2x+1)}{Q}
\]
Damit gilt für \(p_{1,2}(x) \):
\[
p_{1,2}(x+1) = \lambda_{os}^{1} x (Q_{1,2} - 2x) p_{1,2}(x) \frac{Q_{1,2} - (2x+1)}{Q}
\]
mit der Randbedingung:
\[
\sum_{x=0}^{\infty} p_{1,2}(x) = 1
\]
Für die Belastung des Leitungsbündels 1 (bzw. 2) gilt:
\[
\frac{Y_{1}}{2} = i_{os}^{1} (1 - i_{bs})
\]
mit
\[
i_{os}^{1} = \lambda_{os}^{1} \sum_{x=0}^{\infty} (Q_{1,2} - 2x) p_{1,2}(x) \frac{Q_{1,2} - (2x+1)}{Q}
\]
Die interne Verlustwahrscheinlichkeit \(i_{bs} \) des vollkommen erreichbaren Bündels ergibt sich zu (vgl. Gl. (IV.162)):
\[
i_{bs} = \frac{Q_{1,2} - 2n_{s1}}{Q_{1,2} - (2n_{s1}+1)}
\]
Damit kann mit Gl. (IV.174) bis (IV.176) \(p_{1,2}(x) \) iterativ bestimmt werden.

7,6,2,2 Leitungsbündel 3; Betriebsart 3 (eine Externrichtung)

Das Leitungsbündel 3 führt in diesem Fall sowohl den abgehenden als auch den ankommenden Externverkehr. Die Quellenzahl \(Q_{3} \) rechnet sich nach Gl. (IV.157), wobei \(Y_{s1} = Y_{s2} = Y_{3}/2 \) ist. Damit gilt:
\[
(x+2)p_{3}(x+2) = e_{os}^{3}(Q_{3} - (x+1))p_{3}(x+1) + e_{os}^{3} p_{3}(x+1) - \frac{Q_{3} - (x+1)}{Q}
\]
Mit \(e_{os}^{3} = e_{os}^{3}/Q \) und \(e_{os}^{3} = e_{os}^{3} + e_{os}^{3} \) ergibt sich (vgl. Gl. (IV.82)):
\[
p_{3}(x+2) = \frac{Q_{3} - (x+1)}{e_{os}^{3} x+2} p_{3}(x+1)
\]
mit der Randbedingung:
\[
\sum_{x=0}^{\infty} p_{3}(x) = 1
\]
Die Belastung des Leitungsbündels 3 ist (Betriebsart 3):
\[
Y_{e} = Y_{eg} + Y_{ek} = e_{os}^{3} (Q-Y_{ges})(1 - e_{bs})
\]
Die externe Verlustwahrscheinlichkeit \(e_{bs} \) ist (vgl. Gl. (IV.85)):
\[
e_{bs} = \frac{Q_{3} - n_{s3}}{Q_{3} - Y_{e}} p_{3}(n_{s3})
\]
odder mit \(Q_{3} - Y_{e} = Q - Y_{1} - Y_{e} = Q - Y_{ges} \):
\[
e_{bs} = \frac{Q_{3} - n_{s3}}{Q - Y_{ges}} p_{3}(n_{s3})
\]
Damit kann mit Gl. (IV.177) bis (IV.179) \(p_{3}(x) \) iterativ bestimmt werden, es ergibt sich hier eine Erlang-Bernoulli-Verteilung (vgl. Kapitel III.2.3).
7.6.2.3 Leitungsbündel 3 und 4; Betriebsart 4 (zwei Externrichtungen)

Bei der Betriebsart 4 führt das Leitungsbündel 3 den abgehenden Externverkehr und das Leitungsbündel 4 den ankommenden Externverkehr. Der Rechenalgorithmus entspricht dem von Abschnitt 7.6.2.2. Jedoch wird bei der Berechnung von \(p_3(x) \):

- \(e_{os} \) ersetzt durch \(e_{os} \)
- \(Y_e \) ersetzt durch \(Y_{eg} \)
- \(e_{bs} \) ersetzt durch \(e_{bs} \)

Bei der Berechnung von \(p_4(x) \) wird:

- \(e_{os} \) ersetzt durch \(e_{os} \)
- \(Y_e \) ersetzt durch \(Y_{ek} \)
- \(Q_j \) ersetzt durch \(Q_4 \) (nach Gl. (IV.157))
- \(n_{b3} \) ersetzt durch \(n_{b4} \)
- \(e_{bs} \) ersetzt durch \(e_{bs} \)

7.7 Ergebnisse

In Diagramm 13 bis 18 werden für Betriebsart 3 die mit dem Näherungsverfahren ermittelten Ergebnisse Simulationsergebnissen gegenübergestellt. (Betriebsart 3 und 4 sind in ihrem prinzipiellen Rechgang identisch, es werden deshalb hier nur für die verkehrs- theoretisch günstigere Betriebsart 3 Ergebnisse gezeigt.)

Die Ergebnisse des Näherungsverfahrens sind mit einer durchgezogenen Linie gezeichnet. Die Simulationsergebnisse sind mit ihrem Vertrauensintervall und einer statistischen Aussagesicherheit von 95\% durch \(\tilde{1} \) dargestellt.

Es werden Ergebnisse für 3- und 4-stufige Linksysteme und Zufallsverkehr 1. Art bzw. 2. Art gezeigt.

Die Ergebnisse des Näherungsverfahrens stimmen sehr gut mit den Simulationsergebnissen überein.

Diagramm 13: \(h_1 = f(Y_{ges}/(n_{s1} n_{s2} n_{s3}), d_{ges} = 0.666) \) für ZV 2 und Wegesuchalgorithmus 2.

\(\frac{Y_{s1} n_{s1} = Y_{s2} n_{s2} = Y_{s3} n_{s3} = Y_{ges}/(n_{s1} n_{s2} n_{s3})}{} \)
Diagramm 14: $b_{eg} = b_{ek} = f(Y_{ges}/(n_{s1} + n_{s2} + n_{s3}))$, $d_{ges} = 0.666$ für ZV 2 und Wegesuchalgorithmus 2.

$Y_{ges}/n_{s1} = Y_{ges}/n_{s2} = Y_{ges}/n_{s3} = Y_{ges}/(n_{s1} + n_{s2} + n_{s3})$

Diagramm 15: $b_1 = f(Y_{ges}/(n_{s1} + n_{s2} + n_{s3}))$, $d_{ges} = 0.666$ für ZV 1

$Y_{ges}/n_{s1} = Y_{ges}/n_{s2} = Y_{ges}/n_{s3} = Y_{ges}/(n_{s1} + n_{s2} + n_{s3})$
Diagramm 16: \(b_{eg} = b_{ek} = f(Y_{ges}/(n_{s1}+n_{s2}+n_{s3}), d_{ges}=0,666) \) für ZV 1
\((Y_{s1}/n_{s1} = Y_{s2}/n_{s2} = Y_{s3}/n_{s3} = Y_{ges}/(n_{s1}+n_{s2}+n_{s3}) \)

Diagramm 17: \(b_{1} = f(Y_{ges}/(n_{s1}+n_{s2}+n_{s3}), d_{ges}=0,666) \) für ZV 2 und Wegesuchalgorithmus 2.
\((Y_{s1}/n_{s1} = Y_{s2}/n_{s2} = Y_{s3}/n_{s3} = Y_{ges}/(n_{s1}+n_{s2}+n_{s3})) \)
8. Betriebsart 5

8.1 Allgemeines

Die Beschreibung der Betriebsart 5 erfolgt in Abschnitt 8.2.

Die weiteren Abschnitte sind im wesentlichen wie bei der Behandlung der anderen Betriebsarten gegliedert. Da sehr viele Beziehungen gleich wie bei Betriebsart 1, 2, 3 oder 4 sind, wird in den einzelnen Abschnitten nur das Wesentliche wiederholt und es werden nur die Beziehungen hergeleitet, die sich von den entsprechenden Beziehungen der Betriebsarten 1 bis 4 unterscheiden.

In Abschnitt 8.3 werden die gegebenen Größen vorgestellt, in Abschnitt 8.4 wird kurz auf die gesuchten charakteristischen Verkehrsgrößen eingegangen.

In Abschnitt 8.5 bzw. 8.6 werden die zu den anderen Betriebsarten unterschiedlichen Beziehungen für Zufallsverkehr 1.Art bzw. 2.Art hergeleitet. Der Unterschied besteht hierbei in der Berechnung der Wahrscheinlichkeitsverteilung $p_j(x)$ und in der Berechnung der Bündelblockierungen für den Internverkehr.

In Abschnitt 8.7 werden einige Ergebnisse gezeigt.

8.2 Die Beschreibung der Betriebsart 5

Diagramm 18: $b_{eg} = b_{ek} = f(Y_{ges}/(n_{s1}+n_{s2}+n_{s3}))$, $d_{ges} = 0,666$

für ZV 2 und Wegesuchalgorithmus 2.

$(Y_{s1}/n_{s1} = Y_{s2}/n_{s2} = Y_{s3}/n_{s3} = Y_{ges}/(n_{s1}+n_{s2}+n_{s3}))$

Bild 22: s-stufiges Linksystem mit Betriebsart 5.
Das Linkssystem hat zwei Leitungsbündel.

Der Internverkehr wird auf dem Leitungsbündel 1 geführt, d.h. jede Internverbindung belegt auf diesem Leitungsbündel gleichzeitig zwei beliebige freie Leitungen (kommend und gegend). Der abgehende und ankommende Externverkehr wird auf dem Leitungsbündel 2 geführt. Hierbei kann bei der Wegesuche von jedem abgehenden bzw. ankommenden Externruf jede der \(n_{b2} \) Leitungen des Bündels 2 auf frei oder belegt geprüft werden.

Linkssysteme mit Betriebsart 5 können entsprechend wie Linkssysteme mit Betriebsart 3 oder 4 z.B. in modernen Nebenstellenanlagen eingesetzt werden.

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {1};
\node (b) at (1,0) {s};
\node (c) at (0,1) {\textbf{zusätzliche}};
\node (d) at (0,2) {Koppelpunktematrix};
\node (e) at (0,3) {Leitungsbündel 1, \(n_{b1} \) Leitungen};
\end{tikzpicture}
\end{center}

\textbf{Bild 23:} s-stufiges Linkssystem mit Betriebsart 5 in einer Nebenstellenanlage.

Der abgehende und ankommende Teil einer Internverbindung kann bei Betriebsart 5, wo eine Internverbindung zwei beliebige Leitungen dieselben Leitungsbündels 1 belegen kann, über eine zusätzliche Koppelpunktematrix mit vollkommener Erreichbarkeit, entsprechend zu Bild 23, verbunden werden. Diese Matrix hat dann \(n_{b1}^2 \) Koppelpunkte. (Im Gegensatz hierzu hat eine zusätzliche vollkommene Leitungsbündel 1 und 2 bei Betriebsart 3 bzw. 4 und bei gleicher Leitungszahl (vgl. Bild 19, Abschnitt 7.2.1) nur \(n_{b1}^2(n_{b1}/4 \) Koppelpunkte.)

Mit Hilfe dieser Koppelpunktematrix kann im Leitungsbündel 1 jede der \(n_{b1} \) Leitungen mit jeder anderen dieser Leitungen verlustlos verbunden werden. Damit ist die im Nähungsverfahren enthaltene Voraussetzung der Bündelwahl sowohl für den abgehenden als auch den ankommenden Teil des Internverkehrs erfüllt.

Entsprechend wird auch der Externverkehr über eine zusätzliche verlustlose Koppelstufe geführt (vgl. Betriebsart 3 und 4, Abschnitt 7.2).

Ein solches Linkssystem mit Betriebsart 5 könnte z.B. in kleinen Nebenstellenanlagen eingesetzt werden, da dort der Mehraufwand an Koppelpunkten durch die zusätzliche Koppelpunktematrix - gegenüber dem Koppelpunkteaufwand bei Betriebsart 3 bzw. 4 - keine so große Rolle spielt. Betriebsart 5 aber vom verkehrstheoretischen Standpunkt aus, wegen des Bündelungsgewinns und der größeren Leistungsauswahl, vorteilhafter als Betriebsart 3 bzw. 4 ist.

Entsprechend wie bei Betriebsart 3 und 4 kann auch hier das eine Externbündel in zwei getrennte Bündel für den abgehenden und den ankommenden Externverkehr aufgeteilt werden. Da diese Aufteilung rechnerisch aber genauso behandelt wird wie bei Betriebsart 4, wird dieser Fall hier der Übersichtlichkeit halber weggelassen.

\textbf{8.3 Die gegebenen Größen}

Gegeben sind die Strukturparameter des Linkssystems und die Belastungen der verschiedenen Verkehre:

- Internbelastung \(Y_1 \) : \(Y_1 \) ist die Belastung des Leitungsbündels 1.

- abgehende Externbelastung \(Y_{eg} \) : \(Y_{eg} + Y_{ek} \) ist die Belastung des ankommende Externbelastung \(Y_{ek} \) : Leitungsbündels 2.

- Gesamtbelastung : \(Y_{ges} = Y_1 + Y_{eg} + Y_{ek} \)

Ausgehend von diesen Belastungen können entsprechend zu Abschnitt 5.3 (Betriebsart 1) alle interessierenden Belastungen berechnet werden (vgl. Gl.(IV.1) bis (IV.10)).
8.4 Die gesuchten charakteristischen Verkehrsgrößen

Es gelten die Gleichungen von Betriebsart 1 nach Abschnitt 5.4, wobei die Bündelblockierungen $[m]_{1g}$, $[m]_{1k}$, $[m]_{eg}$ und $[m]_{ek}$ entsprechend dem Leitungsbündel, auf dem der jeweilige Verkehr geführt wird, berechnet werden. D.h. $[m]_{1g}$ und $[m]_{1k}$ bei Betriebsart 1 werden bei der Betriebsart 5 ersetzt durch $[m]_{1g}$ und $[m]_{1k}$. Der Index der mittleren Frühscheit gilt wieder das Leitungsbündel an, auf das sich die Berechnung der mittleren Frühscheit bezieht (vgl. Kapitel III.2.2.2).

Entsprechend wird $[m]_{eg}$ und $[m]_{ek}$ ersetzt durch $[m]_{eg}$ und $[m]_{ek}$, da der abgehende und ankommende Externverkehr auf dem Leitungsbündel 2 geführt wird.

Damit können die charakteristischen Größen entsprechend zu Betriebsart 1 berechnet werden (Abschnitt 5.4, Gl. (IV.11) bis (IV.38)).

8.5 Zufallsverkehr 1. Art

8.5.1 Allgemeines

Der Unterschied zwischen Betriebsart 3 bzw. 4 und Betriebsart 5 wirkt sich im Rechenverfahren nur auf die Berechnung der Wahrscheinlichkeitsverteilung auf dem Leitungsbündel 1 und damit auf die Berechnung der internen Bündelblockierungen aus. Es wird deshalb hier nur die Berechnung dieser Wahrscheinlichkeitsverteilung auf dem Leitungsbündel 1 und die Berechnung der internen Bündelblockierungen hergeleitet.

Die Berechnung der externen Bündelblockierungen erfolgt nach Abschnitt 7.5, wobei hier bei der Betriebsart 5 das Leitungsbündel 2 des Leitungsbündel 3 bei der Betriebsart 3 entspricht.

Die Berechnung der Wahrscheinlichkeitsverteilung $w(x)$ auf den k_1 Zwischenleitungen und die daraus resultierenden Verlustwahr- scheinlichkeiten infolge von Blockierungen des Ursprungs- bzw. Zielkoppelvielfaches erfolgt nach Abschnitt 5.5.4 und 5.5.5.

Ebenso erfolgt die Berechnung der Wahrscheinlichkeitsverteilung $p_1(x)$ und die Berechnung der Zwischenblockierungen nach Abschnitt 5.5.6 und 5.5.7.

8.5.2 Die Wahrscheinlichkeitsverteilung $p_1(x)$ auf dem Leitungsbündel 1

Wie bereits in Abschnitt 8.2 dargestellt wird auf dem Leitungsbündel 1 nur Internverkehr geführt. Damit ergibt sich die Rekursionsformel zur Berechnung von $p_1(x)$:

$$p_1(x+2) = \frac{2}{x+2} \frac{A_{os}}{A_{os}} p_1(x)$$

mit der Randbedingung:

$$\sum_{x=0}^{n_{11}} p_1(x) = 1$$

Die Belastung auf dem Leitungsbündel 1 ist Y_1, es gilt die Beziehung (vgl. Gl. (IV.41)):

$$Y_1 = 2 \cdot \frac{A_{os}}{2} \cdot (1 - p_1(n_{s1}) - p_1(n_{s1}-1))$$

Der Anfangswert A_{os} ist:

$$A_{os} = \frac{Y_1}{2}$$

Mit den Beziehungen nach Gl. (IV.180) bis (IV.182) werden iterativ die $p_1(x)$ berechnet (vgl. Abschnitt 5.5.2).

8.5.3 Die internen Bündelblockierungen

Entsprechend zu Gl. (IV.46) gilt für die Bündelblockierung intern abgehend:

$$[m]_{1g} = \sum_{x=m_1}^{n_{11}} p_1(x) \cdot G_1(x)$$

und entsprechend zu Gl. (IV.47) gilt für die Bündelblockierung intern ankommend:

$$[m]_{1k} = \sum_{x=m_{k1}}^{n_{11}-1} p_1(x) \cdot G_1(x+1)$$
8.6 Zufallsverkehr 2. Art

8.6.1 Allgemeines
Auch bei Zufallsverkehr 2. Art wirkt sich der Unterschied zwischen Betriebsart 3 bzw. 4 und Betriebsart 5 nur in der Berechnung der Wahrscheinlichkeitsverteilung \(p_1(x) \) aus. Die Berechnung der internen Bündelblockierungen erfolgt nach Abschnitt 8.5.3.
Die externen Bündelblockierungen werden entsprechend zu Abschnitt 7.6 berechnet.

Auf die Darstellung der Berechnung der Wahrscheinlichkeitsverteilung \(w(x) \) auf den \(k \) Zwischenleitungen, der Verlustwahrscheinlichkeiten infolge von Blockierung des Ursprungs- bzw. Zielkoppeleiwuchs, der Wahrscheinlichkeitsverteilung \(p_1(x) \) und der Zwischenblockierungen wird verzichtet; diese Berechnung wurde in den Abschnitten 5.6.5 bis 5.6.9 gezeigt.

8.6.2 Die Wahrscheinlichkeitsverteilung \(p_1(x) \) auf dem Leitungsbündel 1
Der Erwartungswert \(Q_1 \) der Quellenzahl, die auf das Leitungsbündel 1 wirkt, berechnet sich nach Gl.(IV.157) es gilt:
\[
Q_1 = Q - (Y_{eG} + Y_{ek}) = Q - Y_e
\]
Das Leitungsbündel 1 führt nur Internverkehr, es gilt (vgl. Gl. (IV.82)):
\[
p_1(x+2) = \chi^{Q_1-x}_{\cos} \frac{Q_1-x}{x+2} \cdot p_1(x) \frac{Q_1-(x+1)}{Q} \quad (IV.185)
\]
mit der Randbedingung:
\[
\sum_{x=0}^{n_{s1}} p_1(x) = 1
\]
Hierbei ist:
\[
\chi^{Q_1-x}_{\cos} : \text{die fiktive Anrufrate im Zustand } \{x\},
\]
\[
\frac{Q_1-(x+1)}{Q} : \text{die Wahrscheinlichkeit, daß der gerufene Teilnehmer (einer aus } Q \text{ Teilnehmern), bei Einfall eines Internrufes im Zustand } \{x\} \text{ frei ist.}
\]

Für die Belastung des Leitungsbündels 1 gilt:
\[
Y_1 = 2 \cdot \chi^{A_{os}}_{\cos} (1 - \chi^{b_s}_{1})
\]
mit
\[
\chi^{A_{os}}_{\cos} = \chi^{N_{s1}}_{\cos} \sum_{x=0}^{n_{s1}} (Q_1-x) p_1(x) \frac{Q_1-(x+1)}{Q} \quad (IV.186)
\]

Die interne Verlustwahrscheinlichkeit \(\chi^{b_s}_{1} \) des vollkommen erreichbaren Bündels ergibt sich zu (vgl. Gl. (IV.86)):
\[
\chi^{b_s}_{1} = \frac{(Q_1-n_{s1}) p_1(n_{s1}) (Q_1-(n_{s1}+1)) + (Q_1-(n_{s1}-1)) p_1(n_{s1}-1) (Q_1-n_{s1})}{\sum_{x=0}^{n_{s1}} (Q_1-x) p_1(x) (Q_1-(x+1))} \quad (IV.187)
\]
Damit kann mit Gl.(IV.185) bis (IV.187) \(p_1(x) \) iterativ bestimmt werden.

8.7 Ergebnisse
In Diagramm 19 bis 22 werden für Betriebsart 5 die mit dem Näherungsverfahren ermittelten Ergebnisse Simulationsergebnissen gegenübergestellt.
Die Ergebnisse des Näherungsverfahrens sind mit einer durchgezogenen Linie gezeichnet. Die Simulationsergebnisse sind mit ihrem Vertrauensintervall und einer statistischen Aussagesicherheit von 95% durch \(I \) dargestellt.
Es werden Ergebnisse für 2-, 3- und 4-stufige Linksysteine und Zufallsverkehr 1.Art bzw. 2.Art gezeigt.
Auch hier zeigt sich eine sehr gute Übereinstimmung der Ergebnisse des Näherungsverfahrens mit den Simulationsergebnissen.
Diagramm 20: (1): \(b_1 = f\left(\frac{Y_{ges}}{n_{s1}+n_{s2}}\right), d_{ges} = 0,5 \)
(2): \(b_{eg} = b_{ek} = f\left(\frac{Y_{ges}}{n_{s1}+n_{s2}}\right), d_{ges} = 0,5 \)
\(Y_{ges}/n_{s1} = Y_e/n_{s2} = Y_{ges}/(n_{s1}+n_{s2}) \)

Diagramm 19: (1): \(b_1 = f\left(\frac{Y_{ges}}{n_{s1}+n_{s2}}\right), d_{ges} = 0,5 \)
(2): \(b_{eg} = b_{ek} = f\left(\frac{Y_{ges}}{n_{s1}+n_{s2}}\right), d_{ges} = 0,5 \)
\(Y_{ges}/n_{s1} = Y_e/n_{s2} = Y_{ges}/(n_{s1}+n_{s2}) \)

Diagramm 21: (1): \(b_1 = f(\frac{y_{ges}}{(n_{s1}+n_{s2})}, d_{ges} = 0,5) \) für ZV 2 und
(2): \(b_{eg} = b_{ek} = f(\frac{y_{ges}}{(n_{s1}+n_{s2})}, d_{ges} = 0,5) \) mit
\(y_1/n_{s1} = y_2/n_{s2} = y_{ges}/(n_{s1}+n_{s2}) \)

Diagramm 22: (1): \(b_1 = f(\frac{y_{ges}}{(n_{s1}+n_{s2})}, d_{ges} = 0,5) \) für ZV 1
(2): \(b_{eg} = b_{ek} = f(\frac{y_{ges}}{(n_{s1}+n_{s2})}, d_{ges} = 0,5) \)
\(y_1/n_{s1} = y_2/n_{s2} = y_{ges}/(n_{s1}+n_{s2}) \)
V. Zusammenfassung

Es wird aus der Perspektive von einem bekannten Näherungsverfahren für Linksysteme mit einfach-gerichtetem Verkehr, ein Näherungsverfahren für solche Linksysteme mit doppelt-gerichtetem Verkehr entwickelt.

Hierbei werden drei Verkehrstypen unterschieden:
1) Abgehender Externverkehr
2) Ankommender Externverkehr
3) Internverkehr

Das Nähерungsverfahren berücksichtigt die Verkehrsdeckung im Linksystem, es werden dabei abhängig von dieser Verkehrsdeckung fünf Betriebsarten unterschieden.

Das Nähverfahren erlaubt die Berechnung der charakteristischen Verkehrskröben, wie Verlustwahrscheinlichkeit, Angebot u.s.w., für die verschiedenen Verkehrstypen, ausgehend von der Struktur des Linksystems, der Betriebsart, der Art des angebotenen Verkehrs, dem Wegeaufsuchalgorithmen (bei Zufallsverkehr 2.Art) und der Belastungen der 3 Verkehrstypen.

Es werden Beispiele für die 5 Betriebsarten gebracht, zahlreiche Tests mit künstlich erzeugtem Pannverkehr zeigen die gute Übereinstimmung von Simulations- und Rechenergebnissen.

ANHANG: Die Verlustwahrscheinlichkeit des abgehenden bzw. ankommenden Externverkehrs

Es wird folgende Struktur betrachtet (Bild A1):

abgehender Externverkehr
a) ZV 1
 \(q = \infty \) Teilnehmer
b) ZV 2
 \(q < \infty \) Teilnehmer

Koppelnetzwerk

Leitungsbündel

Ein abgehender Externruf wird von einem der \(q \) Teilnehmer (linke Seite des Koppelnetzwerkes in Bild A1) erzeugt und soll mit einer beliebigen, freien Leitung des rechtseitigen Leitungsbündels (Bild A1) durch das Koppelnetzwerk hindurch verbunden werden. Hierbei kann für den Anrufprozess des abgehenden Externverkehrs angenommen werden:

a) konstante Anrufrate \(q = \infty \); ZV 1
b) die Anrufrate ist vom momentanen Belegungszustand \(\{\} \) des Koppelnetzwerkes abhängig \(q < \infty \); ZV 2

Unabhängig vom abgehenden Externverkehr wird für den ankommenden Externverkehr immer konstante Anrufraten (ZV 1) zugrunde gelegt (vgl. Kapitel IV.3.2). Jedoch tragen nur solche ankommende Externrufe zum Angebot des ankommenden Externverkehrs bei, bei denen der gerufene Teilnehmer (einer aus \(q \) frei ist. Die Wahrscheinlichkeit hierfür ist bei ZV 1 wegen \(q = \infty \) gleich Null, sie ist aber bei ZV 2 im Zustand \(\{\} \) des Koppelnetzwerkes \((q-1)/q \).

1. ZV 1 für den abgehenden Externverkehr

1.1 Abgehender Externverkehr

Für die Wahrscheinlichkeit \(e_{g1}^F(\Delta t) \), dass im infinitesimal kleinen Zeitintervall \(\Delta t \) genau 1 abgehender Externruf einfällt, gilt bei negativ exponential verteilt Anrufabständen (\(e_{g1}^m \): mittlerer Anrufabstand für den abgehenden Externverkehr):

\[
e_{g1}^F(\Delta t) = 1 - e^{e_{g1}^m \Delta t} \tag{A.1}
\]

Die Reiheentwicklung von \(1 - e^{e_{g1}^m \Delta t} \) ergibt (Glieder höherer Ordnung in \(\Delta t \) werden vernachlässigt):

\[
e_{g1}^F(\Delta t) = \frac{\Delta t}{e_{g1}^m} = e_{g1}^{c_A} \Delta t \tag{A.2}
\]

\(e_{g1}^{c_A} = 1/e_{g1}^m \) ist die Anrufrate des abgehenden Externverkehrs.

1.2 Ankommender Externverkehr

Für die Wahrscheinlichkeit \(e_{k1}^F(\Delta t) \) gilt entsprechend:

\[
e_{k1}^F(\Delta t) = e_{k1}^{c_A} \Delta t \tag{A.3}
\]

\(e_{k1}^{c_A} = 1/e_{k1}^m \) ist die Anrufrate des ankommenden Externverkehrs.

1.3 Die Verlustwahrscheinlichkeiten

Es wird allgemein angenommen, dass im Zustand \([i]\) des Koppelnetzwerkes die Sperrwahrscheinlichkeit \(G(i) \) ist. Damit wird die Verlustwahrscheinlichkeit für den abgehenden Externverkehr:

\[
b_{eg} = e_{g1}^{c_A} \sum_{j} p(j) G(j) \quad b_{eg} = e_{g1}^{c_A} \sum_{j} p(j) G(j) \tag{A.4}
\]

Entsprechend gilt für den ankommenden Externverkehr:

\[
b_{ek} = e_{k1}^{c_A} \sum_{j} p(j) G(j) \quad b_{ek} = e_{k1}^{c_A} \sum_{j} p(j) G(j) \tag{A.5}
\]

Wird für den abgehenden Externverkehr ZV 1 zugrunde gelegt (und ZV 1 für den ankommenden Externverkehr) dann gilt:

\(b_{eg} = b_{ek} \).

2. ZV 2 für den abgehenden Externverkehr

2.1 Abgehender Externverkehr

Mit der Anrufrate \(\alpha_{eg} \) je freie Quelle für den abgehenden Externverkehr wird analog zu Abschnitt 1.1 die Wahrscheinlichkeit \(F_{1}^t(\Delta t) \), dass im infinitesimal kleinen Zeitintervall \(\Delta t \) von einer freien Quelle gerade ein Ruf eintrifft:

\[
F_{1}^t(\Delta t) = \alpha_{eg} \Delta t \tag{A.6}
\]

Bei insgesamt \(q \) Quellen gilt im Zustand \([i]\) ((\(q-\)) Quellen sind frei):

\[
p_{0}^{(q-\)}(\Delta t) = (1 - \alpha_{eg} \Delta t)^{q-\} \tag{A.7}
\]

\(F_{1}^{q-\}(\Delta t) \) ist die Wahrscheinlichkeit, dass im infinitesimal kleinen Zeitintervall \(\Delta t \) kein Ruf eintrifft.

Mit \(i + (\ell) \cdot z + (\ell _{1}) \cdot z^2 + \ldots \) ergibt sich aus Gl.(A.7) (Glieder höherer Ordnung in \(\Delta t \) werden vernachlässigt):

\[
p_{0}^{(q-\)}(\Delta t) = 1 - (q-\) \alpha_{eg} \Delta t
\]

und damit

\[
p_{q-\}^{1}(\Delta t) = 1 - F_{1}^{q-\}(\Delta t) = (q-\) \alpha_{eg} \Delta t \tag{A.8}
\]

2.2 Ankommender Externverkehr

Unabhängig vom Zustand \([i]\) des Koppelnetzwerkes gilt (vgl. Gl.(A.3)):

\[
e_{k1}^F(\Delta t) = e_{k1}^{c_A} \Delta t
\]

Da aber für das System nur die Rufe zählen, bei denen der gerufene Teilnehmer frei ist, gilt:

\[
e_{k1}^{q-\}^{1}(\Delta t) = e_{k1}^F(\Delta t) \frac{q-\} \alpha_{eg}}{q} = e_{k1}^{c_A} \frac{q-\} \alpha_{eg}}{q} \Delta t \tag{A.9}
\]

Gl.(A.9) ist also formal gleich wie Gl.(A.8).
2.3 Die Verlustwahrscheinlichkeiten

Bei ZV 2 gilt allgemein (abgehender Externverkehr):

\[b_{eg} = \frac{\sum_{i}^{p} (q-j)p(j)G(j)}{\sum_{i}^{p} (q-j)p(j)} = \frac{\sum_{i}^{p} (q-j)p(j)G(j)}{q-Y} \quad (A.10) \]

Für den ankommenden Externverkehr gilt:

\[b_{ek} = \frac{ek \sum_{i}^{p} p(j)G(j)q-1}{ek \sum_{i}^{p} p(j)G(j)q} = \frac{\sum_{i}^{p} (q-j)p(j)G(j)}{q-Y} \quad (A.11) \]

D.h. auch bei ZV 2 sind die Verlustwahrscheinlichkeiten der beiden Externverkehre identisch.

Nur in den Fällen, wo abgehender und ankommender Externverkehr auf verschiedenen Bündeln geführt wird (vgl. Betriebsart 4, Kapitel IV.7) ist im allgemeinen \(b_{eg} \neq b_{ek} \) (Bild A2).

\[\text{Koppelnetzwerk} \rightarrow p_{1}(j) \]

\[\text{Koppelnetzwerk} \leftarrow p_{2}(j) \]

\text{Bild A2: Koppelnetzwerk mit getrennten Bündeln für abgehenden und ankommenden Externverkehr.}

In diesem Fall ist zwar der Rechenalgorithmus für beide Verkehrstypen gleich (vgl. Gl. (A.10) und (A.11)), aber die Zustandswahrscheinlichkeiten sind im allgemeinen verschieden: \(p_{1}(j) \neq p_{2}(j) \) (im allgemeinen ist auch \(G_{1}(j) \neq G_{2}(j) \)).