Dynamic Resource Operation and Power Model for IP-over-WSON Networks

EUNICE 2013, Chemnitz

Uwe Bauknecht, Frank Feller
{uwe.bauknecht,frank.feller}@ikr.uni-stuttgart.de
2013-08-28

Universität Stuttgart
Institute of Communication Networks and Computer Engineering (IKR)
Prof. Dr.-Ing. Andreas Kirstädter
Table of Contents

Motivation
IP-over-WSON1 Networks
Line Card Model
Conclusion

1. Internet Protocol over Wavelength Switched Optical Network
Motivation

Reduction of Power Consumption in Core Networks

Energy Consumption in Networks

2012 share of ICT equipment: 4.7%\(^1\) of worldwide electrical energy

\(~1/3\) end user equipment, \(1/3\) data centers, \(1/3\) communication networks

1. Not contained: smart phones, networked TVs, game consoles etc. Data from EINS Deliverable 8.1.
Motivation

Reduction of Power Consumption in Core Networks

Energy Consumption in Networks

2012 share of ICT equipment: 4.7%\(^1\) of worldwide electrical energy

~1/3 end user equipment, 1/3 data centers, 1/3 communication networks

Focus on Core Networks

Present situation

- Mode of operation: always on
- No explicit power saving features
- Load dependency: <10%\(^2\)

1. Not contained: smart phones, networked TVs, game consoles etc. Data from EINS Deliverable 8.1.

DE-CIX 2-day graph: average traffic in bit/s
Motivation

Reduction of Power Consumption in Core Networks

Energy Consumption in Networks

2012 share of ICT equipment: 4.7%¹ of worldwide electrical energy
~1/3 end user equipment, 1/3 data centers, 1/3 communication networks

Focus on Core Networks

Present situation
• Mode of operation: always on
• No explicit power saving features
• Load dependency: <10%²

¹ Not contained: smart phones, networked TVs, game consoles etc. Data from EINS Deliverable 8.1.
² Cf. "Power Awareness in Network Design and Routing", Chabarek et al., 2008

DE-CIX 2-day graph: average traffic in bit/s
Source: DE-CIX Traffic Statistics,
© 2013 DE-CIX Management GmbH
Motivation

Reduction of Power Consumption in Core Networks

Energy Consumption in Networks

2012 share of ICT equipment: 4.7%\(^1\) of worldwide electrical energy
~1/3 end user equipment, 1/3 data centers, 1/3 communication networks

Focus on Core Networks

Present situation
- Mode of operation: always on
- No explicit power saving features
- Load dependency: <10%\(^2\)

Envisioned future
- Mode of operation: dynamic
- Deactivation of resources
- Power follows load more closely

DE-CIX 2-day graph: average traffic in bit/s

1. Not contained: smart phones, networked TVs, game consoles etc. Data from EINS Deliverable 8.1.
Motivation

Formulation of Detailed Models

Quantify potential Savings

- Percentage of energy saved through deactivation?
- Absolute amount of energy savings?
- How much is achievable in a particular network?

Dynamic Resource Operation

- Adaptable components
- Applicable power saving schemes
- Effectiveness

Power Consumption

- Primary contributors
- Component power values
IP-over-WSON Networks

Core Network Example
IP-over-WSON Networks

Basic Multi-Layer Structure

IP / Electrical Layer
IP-over-WSON Networks

Basic Multi-Layer Structure

IP / Electrical Layer

WSON / Optical Layer
IP-over-WSON Networks

Basic Multi-Layer Structure
IP-over-WSON Networks

Basic Multi-Layer Structure

IP / Electrical Layer

WSON / Optical Layer
IP-over-WSON Networks

Basic Multi-Layer Structure
IP-over-WSON Networks

Logical Node Structure

Core Router

Routing Engine

IF #1

IF #2

IF #3

IF #4

IF #5

IF #6

Access

WSON-Node

Power Consumption

100%

50%

0%

100%

50%

0%
IP-over-WSON Networks

Logical Node Structure

Core Router
Routing Engine

IF #1
IF #3
IF #5

IF #2
IF #4

WSON-Node

Access

Power Consumption

100% 50% 0%

100% 50% 0%
IP-over-WSON Networks

Logical Node Structure

Core Router

IF #1
IF #3
IF #5

Routing Engine

IF #2
IF #4

WSON-Node

Power Consumption

Access

© 2013 Universität Stuttgart • IKR
U. Bauknecht, F. Feller – EUNICE 2013
IP-over-WSON Networks

Logical Node Structure

Core Router

Routing Engine

IF #1

IF #2

IF #3

IF #4

IF #5

IF #6

WSON-Node

Access

Power Consumption

100%

50%

0%

100%

50%

0%
IP-over-WSON Networks

Component-Based Model
IP-over-WSON Networks

Component-Based Model
Line Card

Components and Power Consumption

Functionality

- Provide network interfaces
- Classify packets
- Store and forward packets
- Connect to switch fabric
Line Card

Components and Power Consumption

Functionality
- Provide network interfaces
- Classify packets
- Store and forward packets
- Connect to switch fabric

Components
- Forwarding Engine
- Port Card with Transceivers

Diagram:
- Forwarding Engine
- Port Card
- to Switch Fabric
- to WSON Node

Power Consumption:
- 446 W
- 209 W
Line Card

Components and Power Consumption

Functionality
- Provide network interfaces
- Classify packets
- Store and forward packets
- Connect to switch fabric

Components
- Forwarding Engine
 - Network Processors (NP) & ASIC
 - Memory
 - Power conversion, control and auxiliary logic
- Port Card with Transceivers
 - Transceivers
 - Port Card with ASIC

![Diagram showing components and power consumption]
Line Card

Dynamic Operation

Sleep States

Transceiver inactive ⇒ sleep

All Transceivers asleep ⇒ Line Card to sleep
Line Card

Dynamic Operation

Sleep States

Transceiver inactive \Rightarrow sleep

All Transceivers asleep \Rightarrow Line Card to sleep

Power/Load Dependency

- NP: >100 cores.
 - Idle power assumed at 30%
 - \Rightarrow 70% scale linearly with IP-Traffic
Line Card

Dynamic Operation

Sleep States

Transceiver inactive \(\Rightarrow\) sleep

All Transceivers asleep
\(\Rightarrow\) Line Card to sleep

Power/Load Dependency

- NP: >100 cores.
 Idle power assumed at 30%
 \(\Rightarrow\) 70% scale linearly with IP-Traffic

- Memory: packet buffers
 Size related to bandwidth-delay product
 \(\Rightarrow\) 50% scale with capacity of active transceivers
Line Card

Dynamic Operation

Sleep States

Transceiver inactive \Rightarrow sleep

All Transceivers asleep \Rightarrow Line Card to sleep

Power/Load Dependency

- NP: >100 cores.
 - Idle power assumed at 30%
 \Rightarrow 70% scale linearly with IP-Traffic

- Memory: packet buffers
 - Size related to bandwidth-delay product
 \Rightarrow 50% scale with capacity of active transceivers

- Memory: routing information
 \Rightarrow 50% assumed static
Line Card

Dynamic Operation

Sleep States

Transceiver inactive ⇒ sleep
All Transceivers asleep ⇒ Line Card to sleep

Power/Load Dependency

- NP: >100 cores.
 Idle power assumed at 30%
 ⇒ 70% scale linearly with IP-Traffic
- Memory: packet buffers
 Size related to bandwidth-delay product
 ⇒ 50% scale with capacity of active transceivers
- Memory: routing information
 ⇒ 50% assumed static
- Power conversion, control and auxiliary logic
 ⇒ Assumed static
Line Card

Dynamic Operation

Current traffic demand: 0%

Forwarding Engine
- Base: Sleep
- NP: Sleep
- Mem: Sleep

Port Card
- ASIC: Sleep
- Transceiver #1: Sleep
- Transceiver #2: Sleep
- Transceiver #3: Sleep

Power in Watt

Traffic in % of LC capacity
Line Card

Dynamic Operation

Current traffic demand: 0%

Forwarding Engine
- Base: 147 W
- NP: 64 W
- Mem: 53 W

Port Card
- ASIC: 47 W
- Transceiver #1: 8 W
- Transceiver #2: Sleep
- Transceiver #3: Sleep

Traffic in % of LC capacity: 0%

Power in Watt: 0
Line Card

Dynamic Operation

Current traffic demand: 25%

Forwarding Engine
- Base: 147 W
- NP: 96 W
- Mem: 53 W

Port Card
- ASIC: 47 W
- Transceiver #1: 8 W
- Transceiver #2: Sleep
- Transceiver #3: Sleep

![Diagram showing power consumption and traffic demand relation]
Line Card

Dynamic Operation

Current traffic demand: 50%

Forwarding Engine
- Base: 147 W
- NP: 128 W
- Mem: 66 W

Port Card
- ASIC: 93 W
- Transceiver #1: 8 W
- Transceiver #2: 8 W
- Transceiver #3: Sleep

Graph showing the relationship between traffic in % of LC capacity and power in Watt.

Traffic in % of LC capacity: 50%
Power in Watt: 100, 200, 300, 400

© 2013 Universität Stuttgart • IKR
Line Card

Dynamic Operation

Current traffic demand: 100%

Forwarding Engine
- Base: 147 W
- NP: 193 W
- Mem: 79 W

Port Card
- ASIC: 139 W
- Transceiver #1: 8 W
- Transceiver #2: 8 W
- Transceiver #3: 8 W

Traffic in % of LC capacity
Power in Watt

© 2013 Universität Stuttgart • IKR
U. Bauknecht, F. Feller – EUNICE 2013
Conclusion

Overview
Conclusion

Power Saving in IP-over-WSON Networks
• Large variations in traffic allow savings
• Dynamic Operation can save significant amounts of energy
• Exact savings are quantifiable through the models
• Model applicable in evaluation of network (re)configuration schemes

Future Work
• Extension to new optical technologies (Software-defined Transceivers, Flexgrid, etc.)
• Integration of more complex node structures
• Application in network (re)configuration scenarios
Conclusion

Power Saving in IP-over-WSON Networks

• Large variations in traffic allow savings
• Dynamic Operation can save significant amounts of energy
• Exact savings are quantifiable through the models
• Model applicable in evaluation of network (re)configuration schemes

Future Work

• Extension to new optical technologies (Software-defined Transceivers, Flexgrid, etc.)
• Integration of more complex node structures
• Application in network (re)configuration scenarios

Thank you!