Passive Optical Networks (PONs)

A. Kirstädter, November 27, 2006

Content

Introduction

- Generic PON Architecture
- Fiber vs. Copper
- Today's PONs
- Market Perspectives
- Future PON Architectures
- Products

Networks in WAN / Metro / Access

(source: Photonik 2/2006)

Metro and Access

Explosive Bandwidth Demand Growth

Interregional Internet Bandwidth, mid-2005 (with half-year growth rates)

New Applications Drive New Bandwidth Hype

Some Examples:

• Video Instant Messaging: MSN Messenger alone, with 26m concurrent users (over 3x that of Skype's peak usage level), had logged 1.1bn minutes of video chat in January.

Mass Gaming: E.g., a study on gaming by the BBC in December 2005 determined that 22.7m Britons aged 11 – 65 play video games of some sort, and 8% of these engage in massively multiplayer online role playing games MMORPGs
→ around 1.8m MMORPG players in the UK alone

- Virtual Communities: "Second Life", "Hive7", ...
- Blogging, photosharing, and user generated content:
- in February, 2005, blog-tracking company Technorati claimed to track 6.9m blogs
- popular site Flickr! now hosting over 120m images and adding 500k images per day
- Video search and streaming: YouTube...
- P2P file sharing

"So, what's happening there?"

Separation of Services and Infrastructure:

Applications and content move to network borders, to the users.

Content

Introduction

- Generic PON Architecture
- Fiber vs. Copper
- Today's PONs
- Market Perspectives
- Future PON Architectures

Application	Downstream requirement	Upstream requirement
HDTV (3 per home at 20 Mbit/s each) Standard TV = 4.5Mbit/s	60 Mbit/s	<1 Mbit/s
Online gaming	2-20 Mbit/s 2-20 Mbit/s	
VoIP Telephone (3 per home at 100kbit/s)	0.3 Mbit/s 0.3 Mbit/s	
Data/ Email etc	10 Mbit/s	10 Mbit/s
DVD download for rental Assume download must take <10 mins i.e. the time to get one from a rental store	14 Mbit/s	<1 Mbit/s
Total	~100 Mbit/s	~30 Mbit/s

(Source: EU-IST MUSE)

PON Deployment Scenarios

⁽Source: PON Forum)

xPON Operation

SIEMENS

Content

Introduction

Generic PON Architecture

Fiber vs. Copper

Today's PONs

Market Perspectives

Future PON Architectures

Products

Current Access Network

(Source: T-Systems, Oct. 2005)

DSL LAN wiring configuration

DSL - Impairments

Noise

Switches, lighting, power lines, AM broadcasting, Ham radio

Crosstalk

- NEXT –reflected back to adjacent receiver
- FEXT –Cross coupling between adjacent wires in binder, attenuated by the line
- NEXT dominates FEXT where it occurs although reduced for example by non-overlapping DS/US frequency bands

Bridged taps

- Tap cable not in the direct CPE-CO path, can result in echoes and attenuation glitches
- Attenuation...
- → Discrete Multi-tone Modulation

xDSL – Limited Bandwidth-Length Product

Migration to high-speed Access: Step 1 FttC PtP in 2nd mile, VDSL in 1st mile

25...50 Mbps per subscriber

SIEMENS

Migration to high-speed Access: Step 2 GPON FttH Overlay in addition to VDSL deployment

SIEMENS

Content

Introduction

Generic PON Architecture

Fiber vs. Copper

Today's PONs

Market Perspectives

Future PON Architectures

Products

Generic Network Layout

Optical Network Termination

- OLT Optical Line Termination (interfaces to metro core network)
- Splitter wavelength independent passive optical power splitter
- **ONT/ONU** Optical Network Termination/Unit (fiber termination device at subscriber's home, may integrate connection to set top box, modem etc.)

•NT – Network Termination (electrical endpoint at users' premises, e.g. DSL or WiMax/WiFi) SIEMENS (c) Siemens Networks GmbH & Co KG Nov. 27, 2006 20

Passive Optical Splitter

Splitting factor 2^{N} => Systematic Attenuation = N x 3 dB

(In addition normal, technology dependend insertion loss has to be considered).

Fiber Access Network Architectures : FttH/B and FttN/C

"Fiber to the Home/Building"

"Fiber to the Node/Curb"

Fiber Access Network Architectures: FttN vs FttH

PON Technologies and Corresponding Standards

There are three main PON technologies standardized within either ITU or IEEE:

- BPON Broadband PON (ITU-T G.983, standard based on ATM-PON)
- GPON Gigabit-PON (ITU-T G.984, evolution of BPON (based on ATM or Ethernet)
- EPON or GEPON (Gigabit) Ethernet PON (IEEE 802.3ah)

xPON – Variants

	B-PON	E-PON	G-PON
Standardization body	ITU-T	IEEE	ITU-T
First draft of	1995	2000	2002
standardization			
DS Bit rate	155/622/1244Mbps	1.2Gbps	1.2/2.4Gbps
US Bit rate	155/622Mbps	1.2Gbps	155/622/Mbps
			1.2/2.4Gbps
Splitting Factor	32 (64 planned)	Min 16	32-64 (128 planned)
Bandwidth Efficiency			
Payload	ATM cells	Ethernet	ATM or Ethernet
			(GEM) / TDM
3 rd wave length for	Standardized	Not standardized	Standardized
CATV overlay			
Fiber protection	Standardized	None	Standardized
Down stream security	Churning/AES	None	AES
FEC	None	Standardized	Standardized

(Source: NORTEL)

Ethernet in the First Mile – EPONs, IEEE 802.3ah

Ethernet for subscriber access networks combines:

- Minimal set of extensions to the IEEE 802.3 Media Access Control (MAC) and MAC Control sublayers with
- Family of Physical Layers.

Ethernet Passive Optical Networks (EPONs)

- Point-to-Multipoint (P2MP) network topology is implemented with passive optical splitters
- Extensions to the MAC Control sublayer and Reconciliation sublayer as well as optical fiber PMDs to support this topology.

Architectural positioning of EFM: P2P Topologies

Architectural positioning of EFM: P2MP Topologies

- GMII GIGABIT MEDIA INDEPENDENT INTERFACE
- MDI MEDIUM DEPENDENT INTERFACE
- OAM OPERATIONS, ADMINISTRATION, AND MAINTENANCE
- OLT OPTICAL LINE TERMINAL

ONU - OPTICAL NETWORK UNIT

- PCS PHYSICAL CODING SUBLAYER
- PHY PHYSICAL LAYER DEVICE
- PMA PHYSICAL MEDIUM ATTACHMENT
- PMD PHYSICAL MEDIUM DEPENDENT

(Source: IEEE)

Multi-Point MAC Control Protocol (MPCP):

- The Multi-Point MAC Control Protocol (MPCP) uses messages, state machines, and timers to control access to a P2MP topology.
- Every P2MP topology consists of one Optical Line Terminal (OLT) plus one or more ONUs,
- One of several instances of the MPCP in the OLT communicates with the instance of the MPCP in the ONU. A pair of MPCPs that communicate between the OLT and ONU are a distinct and associated pair.

Reconciliation Sublayer (RS):

- The combination of MPCP and the extension of the Reconciliation Sublayer (RS) for P2P Emulation allows an underlying P2MP network to appear as a collection of point to point links to the higher protocol layers (at and above the MAC Client).
- It achieves this by prepending a Logical Link Identification (LLID) to the beginning of each data frame, replacing two octets of the preamble.

Functional Blocks:

• **Discovery Processing**. This block manages the discovery process, through which an ONU is discovered and registered with the network while compensating for RTT.

• **Report Processing**. This block manages the generation and collection of report messages, through which bandwidth requirements are sent upstream from the ONU to the OLT.

• **Gate Processing**. This block manages the generation and collection of gate messages, through which multiplexing of multiple transmitters is achieved.

Absolute timing model

- A global clock exists in the OLT
- Absolute timestamps distribute clock
- Timestamp added to all protocol related messages when generated
- Delay compensation is performed at OLT
- All grant start times are pre-compensated for RTT

EPON MAC Functions (I)

 $OLT \rightarrow ONU$ bandwidth assignment

(Source: PMC-Sierra)

SIEMENS

EPON MAC Functions (II)

 $ONU \rightarrow OLT$ bandwidth request

(Source: PMC-Sierra)

SIEMENS

EPON: RTT Measurement

(Source: PMC-Sierra)

SIEMENS

EPON: Physical Layer Interfaces

(Source: PMC-Sierra)

SIEMENS

GPON Architecture according to ITU-T

Content

Introduction

Generic PON Architecture

Fiber vs. Copper

Today's PONs

Market Perspectives

Future PON Architectures

Products

Possible Cost Advantages of PONs

Revenue Side:

- Triple Play:
 - existing & coming TDM-, ATM- and Ethernet based service demands
 - VoIP everywhere by centralized gateway in ONT/ONU
 - Enables CATV over the same infrastructure
- Customized tariff structures with Bandwidth-on-demand mechanisms, ideal access solution for value-add applications (e.g. Video Telephony, home control, e-learning)

CAPEX & OPEX Side:

- Reduction in:
 - Number of fibers to serve all customers + Footprint + Aggregation ports
- Increased flexibility:
 - Simplified addition of new customers
- No powering & cooling in access nodes ("passive")
- Minimized maintenance cost
- Centralized control of the whole access network

PON Deployment by Region

Typical Asian FTTH installation:

- Typically densely populated areas (short distances)
- Installation over the air via drop cables, often together with power lines is widely accepted
- → No digging for new FTTH installation required

Typical North American FTTH installation:

- Densely populated areas as well as rural areas with long distanc
- Installation over the air via drop cables accepted in rural areas
- → Digging only in densely populated areas (cities) required

Typical European FTTH migration Scenario

- All cables sub-surface
- Replacing copper stepwise with growing bandwidth demand

Content

Introduction

Generic PON Architecture

Fiber vs. Copper

Today's PONs

Market Perspectives

Future PON Architectures

Products

Future PON Solutions Trend: Convergence of Metro & Access

Source NTT, "Optical Access Trends in Broadband Ubiquitous Service Development"

SIEMENS

EU-IST Super-PON (MUSE): Architecture Details

SIEMENS

EU-IST PIEMAN: Target Architecture

all ONUs

"colorless"

PIEMAN Target Architecture

- Integration of Metro & Access into a single system
- all-optical Local-Exchange
- reduced CapEx and OpEx: one OLT is shared by up to 16384 ONUs
- symmetrical 10Gbps
- Architecture discussed in FSAN/ITU-T as upcoming NG-GPON standard

SIEMENS

Next Generation EPON: discussion in "10G EPON subcommittee" of the Ethernet Alliance Extension to 10 Gbps up & down Reach and splitting factor expected to be similar to EPON First Research Results presented (2 ONUs only)

Next Generation GPON: discussion in "Full Service Access Network" (FSAN) group, driving standardization within ITU-T)

Converged Metro & Access Network (similar to PIEMAN, SuperPON)

WDM in the Metro and TDM in the Access, 10Gbps downstream

Discussions in early stage

Content

Introduction

Generic PON Architecture

Fiber vs. Copper

Today's PONs

Market Perspectives

Future PON Architectures

Products

SURPASS Carrier Ethernet Products Overview

Product Example GPON Siemens SURPASS hiX 57xx Series GPON Solution

SIEMENS

SURPASS Carrier Ethernet Optical Broadband Access SURPASS hiX 57xx Series GPON OLT Product

Feature set:

- **IP Routing** (static, RIP, OSPF, BGP)
- Spanning Tree: PSTP, RSTP, MSTP
- Link Aggregation (802.1ad)
- VLAN Stacking
- ERP (Ethernet Ring Protection),
- SP, WFQ, WRR
- 4 queues per port
- QoS acc. to 802.1p, DSCP/TOS
- Static Guaranteed SLA (CIR, PIR, CBS, MBS)
- Ethernet First Mile
- IGMP Snooping/Proxy for IP Multicast
- DHCP Relay Agent (opt.82)
- ACL, DoS prevention

Fully GPON standard compliance:

- 2.5Gbps of bandwidth at 93% Efficiency
- G.984.1: GSR (Service Requirements)
- G.984.2: GPM (Physical Media)
- G.984.3: GTC (Transmission Convergence)
- G.984.4: GOMCI (ONT MNG & Control I/F)

SURPASS hiX 5750

14 service-card slots 4 ports GPON card (incl. 8 ports E1) 1 port 10GE card 10 ports GE card 16 ports FE card Fully redundant switch matrix GE / 10GE uplinks STM16 / OC48 uplinks (GFP) Service Cards of hiX56-Series IP-DSLAM

SURPASS Carrier Ethernet SURPASS hiX57-Series GPON ONT/ONU Products

SURPASS hiX 5701/02/03

- Indoor & outdoor variants
- POTS/Ethernet/Video ONT
- Integrated VoIP gateway
- Pure Ethernet ONT

SURPASS hiX 5705/06

Business Units

- Indoor & outdoor variants
- POTS/Ethernet/Leased Lines
- Integrated VoIP gateway

SURPASS hiX 5709

Multi Dwelling Units

- Indoor & outdoor variants
- POTS/Video/data ONU
- Integrated VoIP client
- Ethernet Module
- ADSL2+&POTS Module
- VDSL2 Module
- POTS Module

SURPASS hiX 5701/5702/5703 FTTH Solution GPON ONT SFU/E-SFU

hiX 5702/3 SFU (Single Family Unit)

- Single-Fiber GPON uplink (2.5Gbps down/1.25Gbps up)
- 4 ports POTS
- 1/2 port 10/100/1000 baseT
- CATV-RF (50...870 Mhz) +14dBmV (hiX 5702)
- VoIP client (SIP, H.248) via Software download

hiX 5701 E-SFU (Ethernet Single Family Unit)

- Single-Fiber GPON uplink (2.5Gbps down / 1.25Gbps up)
- 1 port 10/100/1000 BT

