OPEX reduction through GMPLS/ASON
- a business case study

Andreas Iselt, Sandrine Pasqualini, Andreas Kirstädter
Siemens AG, Corporate Technology, Information & Communication, Munich, Germany

Sofie Verbrugge, Didier Colle, Mario Pickavet, Piet Demeester
Dept. of Information Technology (INTEC), Ghent University – IMEC – IBBT, Ghent, Belgium

Monika Jäger, Ralf Huelsmann, Fritz-Joachim Westphal
Technologiezentrum, T-Systems International, Berlin, Germany
Motivation

- ASON/GMPLS often promoted as a key technology to reduce OPEX and CAPEX
- Few studies on OPEX so far
- We quantify the cost reduction potential of ASON/GMPLS
Outline

- Defining OPEX
- Process-based OPEX modelling
 - Approach
 - Typical processes
 - ASON/GMPLS modified processes
- Quantitative results
 - Service provisioning
 - Overall OPEX
- Analysis and conclusions
Defining OPEX

Total expenditures of a company

- Capital expenditures: CAPEX
 - Contribute to fixed company infrastructure
 - Depreciated over time
 - Purchase of land and buildings
 - Network infrastructure
 - Software

- Operational expenditures: OPEX
 - Cost to keep company operational
 - Do not contribute to infrastructure itself, not subject to depreciation
 - Rented and leased infrastructure
 - Personnel wages

Network operator
OPEX subparts

q Network operation
 – For a network which is up and running
 – Maintenance, service provisioning, etc.

q Equipment installation
 – First time installation costs
 – Up-front planning

q General OPEX
 – Non-telco specific infrastructure and administration
Outline

q Defining OPEX

q Process-based OPEX modelling
 – Approach
 – Typical processes
 – ASON/GMPLS modified processes

q Quantitative results
 – Service provisioning
 – Overall OPEX

q Analysis and conclusions
Approach

q Formal description of network operations
 – Identify generic processes
 – Modelling

q Changes expected with ASON/GMPLS
 – Qualitative and quantitative variation

q Relate to total OPEX
 – Network scenario
 – Relative weight of each OPEX category
Operational processes

- Continuous and recurring processes
 - Continuous cost of infrastructure
 - Routine operations, maintenance
 - Reparation
 - Operational network planning
 - Marketing

- Service management processes
 - Service offer
 - Service provisioning
 - Service cessation
 - Service move or change
Service management processes

q Service offer
 – The operator makes an offer at the customer’s request

q Service provisioning
 – According to the terms of the contract, physical delivery of the service is carried out

q Service cessation
 – Contract update, coordination between new service setup and release of the previous service.

q Service move or change
 – End of the contract, release of the connection and recovery of equipment
Service offer

Dr. Andreas Iselt (Siemens AG) – IST project NOBEL
Service provisioning
Service cessation

- Customer:
 - Request Cessation
 - Receive Cessation information

- Sales:
 - Assess Request
 - End of contract
 - Confirm Cessation

- Administration:
 - Generate Final Bill

- Project Management:
 - Create Work packages
 - Send Information of Cessation
 - Close Cease Order

- Network Operation Local Domain:
 - Deactivate Circuit / Switch Off
 - Physical Recovery of Equipment

- Network Operations Other Domains:
 - Deactivate Circuit / Switch Off
 - Physical Recovery of Equipment

- External Suppliers:
 - Deactivate Circuit / Switch Off
 - Physical Recovery of Equipment
Service move or change

q Combination of services
 – Prepare offer for “new“ service
 – provisioning of new service
 – Cessation of previous service

q Requires additionnal coordination
 – Common resources
Outline

- Defining OPEX
- Process-based OPEX modelling
 - Approach
 - Typical processes
 - ASON/GMPLS modified processes
- Quantitative results
 - Service provisioning
 - Overall OPEX
- Analysis and conclusions
NMS: Current Limitations

q OTN currently operated by NMS
 – Administration & maintenance
 – Centralized provisioning

q NMS are widespread but
 – Manual configuration
 – Human communication
 – Limited to a domain
 – Lack of standardized interfaces
GMPLS/ASON: Expected improvements

- **Compatibility between different domains**
 - Standardized interfaces (UNI, NNI)

- **Automatic configuration of connections**
 - Call control, connection control

- **Service Level Agreement (SLA)**
 - Unified set of service classes
Automated service provisioning

<table>
<thead>
<tr>
<th>Client</th>
<th>Signaling</th>
<th>Acknowledgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td>UNI</td>
<td></td>
</tr>
<tr>
<td>Administration (Databases)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Management</td>
<td>Call Control</td>
<td>Response OK?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Network Operation Local Domain</td>
<td>RSVP Signaling</td>
<td>Manual Intervention</td>
</tr>
<tr>
<td>Network Operation Other Domain</td>
<td>RSVP Signaling</td>
<td></td>
</tr>
<tr>
<td>External Supplier</td>
<td>RSVP Signaling</td>
<td></td>
</tr>
</tbody>
</table>
Automated service cessation

<table>
<thead>
<tr>
<th>Customer</th>
<th>Request Cessation</th>
<th>Receive Cessation information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assess Request</td>
<td>End of contract</td>
<td>Confirm Cessation</td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNI</td>
<td></td>
<td>Generate Final Bill</td>
</tr>
<tr>
<td>Project Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INI</td>
<td>Deactivate Circuit / RSVP signaling</td>
<td>ENNI</td>
</tr>
<tr>
<td>Network Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Domains</td>
<td>Deactivate Circuit / RSVP signaling</td>
<td>ENNI</td>
</tr>
<tr>
<td>External Suppliers</td>
<td>Deactivate Circuit / RSVP signaling</td>
<td>ENNI</td>
</tr>
</tbody>
</table>
SLA Negotiations

<table>
<thead>
<tr>
<th>Client</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inquiry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate Inquiry</td>
</tr>
<tr>
<td>Price Calculation in Coverage Map</td>
</tr>
<tr>
<td>Prepare Offer</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>Price Calculation</td>
</tr>
<tr>
<td>Negotiations</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Negotiations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Administration (Databases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate Requests</td>
</tr>
<tr>
<td>Projecting Results Cost Calculation</td>
</tr>
<tr>
<td>Project coordination</td>
</tr>
<tr>
<td>Customer Care</td>
</tr>
<tr>
<td>Billing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate Requests</td>
</tr>
<tr>
<td>Projecting Results Cost Calculation</td>
</tr>
<tr>
<td>Project coordination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network Operation Local Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability Check (Plan)</td>
</tr>
<tr>
<td>Install</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network Operation Other Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide offer for service segment</td>
</tr>
<tr>
<td>Install</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide offer for service segment</td>
</tr>
<tr>
<td>Install</td>
</tr>
</tbody>
</table>
Outline

- Defining OPEX
- Process-based OPEX modelling
 - Approach
 - Typical processes
 - ASON/GMPLS modified processes
- Quantitative results
 - Service provisioning
 - Overall OPEX
- Analysis and conclusions
Quantitative Results

- Focus on labour costs
- Assign duration (hours) to the activities, and probabilities to the decisions
- Estimate hourly wages for each employee category
- Sum up costs for all steps
 - Gives an upper bound estimate of a given process
- Figures obtained by means of surveys and interviews
First analysis

q Reveals two types of operators

- „Incumbent“
 - More hours for sales, administration and management
- And so called „new entrant“
 - Lower figures for these, the rest remaining in the same range
 - Due to
 - smaller network to maintain
 - Fewer types of services offered
Incumbent

- Nearly as expensive as service delivery
- Less management and operations
- SLA negotiations more expensive
- Consider offer+delivery
New Entrant

Processes are cheaper
- Less administration and management (smaller network)
- But less types of services
- Need for external supplier
 - Rental costs
 - Tests at interconnection point

ASON processes
- Cheaper
- In the same proportion
Overall OPEX

q Significant impact on OPEX related to service management

q How does it relate to other OPEX subparts?
Estimating yearly OPEX – input data

- Reference network
 - WDM network
 - 2.5 Gbps leased lines

- Traffic
 - Figures of reference network for 2004
 - Leads to a total of 1214 services in one year
 - 80% of services are standard

- Equipment
 - MTBF, life time

- Failure probabilities
 - Alarm types: preventive alarms, failure alarms
 - Failure types: external, hardware, misconfiguration/software, etc.
Estimated number of failures

- Architecture
- Topology
- Traffic

→ Dimensioning

- Failure probabilities
- Equipment MTBF

Repair process

1171 failures
749 preventive alarms

Routine operation process
Yearly OPEX

![Bar chart showing yearly OPEX categories: routine operation, repair process, service offer, service provisioning. The chart compares traditional and GMPLS methods. The y-axis represents costs in €10^6.]
Outline

q Defining OPEX

q Process-based OPEX modelling
 – Approach
 – Typical processes
 – ASON/GMPLS modified processes

q Quantitative results
 – Service provisioning
 – Overall OPEX

q Analysis and conclusions
Conclusion

q Most network operator‘s processes are similar and can be modelled quite generically

q When looking at typical effort
 – Major differences between incumbent and „new entrants“
 – Lighter business processes, but interactions with external suppliers

q OPEX effort and cost reduction in the order of 50% for both types
Thanks for your attention

Questions?

andreas.iselt@siemens.com