
Self-routing Crossbar Switch with Internal Contention Resolution

aChristoph Heer, bAndreas Kirstädter, aChristian Sauer

aInfineon Technologies, Corporate Development
 bSiemens AG, Corporate Technology
Otto-Hahn-Ring 6, D-81730 München

christoph.heer@infineon.com

ABSTRACT

Network components for switching and routing
systems are needed for the increasing demand of
higher bandwidth. Especially the local area
networks (LAN) see a strong move from fast
Ethernet to gigabit Ethernet transmission. Therefore
future router and switch architectures have to be
scalable for higher bandwidth. The presented
crossbar switch allows building up active
backplanes and to connect up to 12 line cards with
up to 12 FE ports each. With its aggregated
bandwidth of 24 Gbit/sec the crossbar it’s the
central switching element of this system.
The circuit runs at 125 MHz and consumes about
2,5 W. The overall area of the pad-limited design is
given by 64 mm² while the core area for the
switching matrix, control logic and memories is
about 25 mm².

INTRODUCTION

The last years have seen a steep rise in the available
transmission capacities for voice and data networks.
To fulfill the promise of an all-integrating high-
bandwidth support for everyone switches and
routers are needed with throughputs in the multi-
gigabit and terabit per second range. At such high
speed the network protocols can only be
implemented in hardware. Since the processing
capabilities of the single chips in a high-speed
switch or router are limited (mostly by memory
bandwidth it is necessary to use several of them in a
parallel but coupled operation mode. Several
alternatives exist for connecting the single chips in
the system: passive backplanes are severely limited
in their aggregated throughput because of their bus
architecture. Active backplanes can either be built
by using shared-memory switching chips from the
ATM world or by using crossbar architectures.

Since shared-memory switching chips are again
severely limited by the bandwidth of the internal
memory a cascading architecture has to be used that
requires a large number of chips to stay internally
non-blocking. Crossbar switching architectures on
the other hand operate fully in parallel. Thus the
total throughput of a crossbar chip is only limited by
the number of available package pins and the
technique used to interconnect them with the
protocol processing chips. Since a crossbar does not
contain internal buffers transmission conflicts have
to be avoided by so-called contention resolution
algorithms that do a look-ahead transmission control
to prevent collisions at the output ports of the
crossbar.
This paper describes a crossbar chip developed for
an Ethernet switching and routing chip set. The next
chapter shortly explains the overall system
architecture. Then the internal block diagram of the
crossbar switch is shown followed by a description
of the interaction between the crossbar chip and the
port chips around it. Another chapter explains the
different operation modes and the test features of the
chip that can also be used for system monitoring and
as a load pattern generator. The paper concludes
with a short description of the overall chip data.

SYSTEM ARCHITECTURE

Figure 1 shows the overall system architecture and
the data flow. The crossbar chip is connected by
LVDS [1] links with a data rate of 2 Gbit/s to a
number (up to 12) of port chips that do the layer
2,3,4-protocol processing. The crossbar itself
operates in time-slots: the port chips segment the
data packets for transmission over the crossbar into
fixed-size cells with an overall length of 70 bytes
(see the cell format in figure 3). Thus a crossbar
timeslot has a length of 280ns.

6930-7803-7057-0/01/$10.00 ©2001 IEEE.

Therefore the way of a data packet across the
system comprises the following actions:

• reception by an ingress port chip,
• protocol processing in the ingress port chip,
• packet buffering in the ingress port chip,
• segmentation into cells,
• transfer of the cells over the crossbar,
• re-assembly of the cells in the egress port

chip,
• protocol processing in the egress port chip,

and
• transmission of the packet to its destination.

Note: the crossbar chip operates self-routing; a field
in the cell header contains the ID of the destination
chip.
The protocol processing in the ingress chips
consumes strongly varying amounts of time –
especially if higher data communication layers are
involved. Therefore it is necessary to buffer the
incoming data packets in the ingress chips. In order
to avoid as much as possible any further propagation
delays in the system it has been decided to
implement the crossbar chip itself without any
internal buffering capabilities.

Figure 1: system architecture

Therefore cell transmission conflicts that arise when
several cells from different ingress chips that are
destined to the same egress chip arrive at the
crossbar at the same timeslot cannot be resolved by
internal buffers in the crossbar. These situations
have to be avoided in advance by an efficient and
fair contention resolution mechanism (e.g. [2], [3]).

For this purpose the crossbar chip contains a control
unit that implements the contention resolution
algorithm presented in [2] and that communicates
with the transmission controllers in the port chips.
The flow of the contention resolution information
between one of the port chips and the control unit in
the crossbar is given in figure 2. The single steps in
the contention resolution process (repeated during
every timeslot) are:

• At the beginning of each cell transmission
slot the single port chips communicate the
availability of cells to the single crossbar
output ports to the crossbar by a bit vector in
the cell header of the presently sent cell: the
so-called contention resolution request
(CRreq).

• The crossbar extracts these bit vectors from
the cell headers and feeds this information to
its contention resolution unit.

• The contention resolution unit processes
(during around 120ns) the CRreq from all
inputs and identifies a nearly optimum
allocation of contention resolution grants
(CRgnt) to the single port chips.

• These CRgnt’s are the transmitted back to the
requesting port chips within the cell headers
of the cells currently leaving the output ports
of the crossbar chip.

The port chips then schedule the cells according to
the received CRgnt for the transmission in the next
timeslot (pipelined operation of contention
resolution and data transfer).

Figure 2: information flow of request and grant

694

Figure 3: data cell format

BLOCK DIAGRAM OF CROSSBAR
SWITCH

Low voltage differential signaling (LVDS) ports are
used for external communication from the crossbar
switch to the port chips. The LVDS ports are four
bits wide and are running at a clock frequency of
625 MHz.
The crossbar switch itself consists of five major
units. Incoming data cells are investigated by 12
port interface modules. The port interface module
detects the start of a new cell and extracts cell
specific data. The destination of the cell is sent to
the switching matrix, the request vector for future
data cells is sent to a contention resolution unit. The
data cell itself is stored in a local buffer. Outgoing
cells are rebuilt at the output of the port interface
module. Header and data words are received via the
switching matrix. Port specific data, like parity
errors detected in the incoming cell, are inserted in
the outgoing cell header.
The contention resolution takes the request vectors
from the 12 input ports and grants the output
resources. The grant is the binary encoded number
of the egress chip, reserved to receive the next data
cell from the respective ingress port chip. The grant
is binary encoded in the header of the outgoing cell
and sent back to the respective ingress port chip.
Aim of the central controller of the crossbar switch
is the generation of a global synchronization scheme
for the whole system. All data cells are sent to the
egress port chips synchronously to the master clock
signal of the chip. As the latency of the contention
resolution as well as the latency of the data path is
given, the controller can force a fixed scheduling of
all operations inside the circuit.
The fixed internal scheduling of operation only
allows for a limited latency of the external port

chips. As soon as the start signal for the contention
resolution has been set, no further input data and
requests can be taken into account. Therefore port
chips, which have not sent their data in time or lost
synchronization, are taken as not available. A grant
will not be sent to these ports nor will they receive a
cell with valid data. Instead a cell with empty
payload data will be sent, to allow the respective
port to resynchronize again.
The switching matrix is a switching array with 12
inputs and 12 outputs of 16-bit data width. The
crosspoint switches are set by the destination vector
of the incoming data cells as soon as a start signal
from the central controller is received.
Synchronously to that signal, all internal crosspoints
are set. As all destinations have been derived from
the grants delivered before by the contention
resolution unit, conflicts are avoided.

Figure 4: top level crossbar diagram

A test controller, configured via a microcontroller
interface, is used to implement various test features
for circuit and system analysis. Three 2 kbyte
RAMs are implemented to stimulate and to monitor
data cells at the input and output ports of the circuit.

OPERATING MODES

As stated above, the incoming data cells have to be
available before a certain central trigger signal for
the contention resolution has been set. This
scheduling implies strong requirements on the
external latency of a data cell. Each data cell has to
stay in the crossbar switch for at least the latency of
the contention resolution plus the latency of the data
in the port interface module (detection of new cell

695

header and reconstruction of outgoing cell data).
Therefore the time budget for the external port chips
to close the loop is rather low. To allow for larger
external delays, the crossbar switch may be used in
the so-called ‘late start_of_cell mode’. This mode is
statically configured via an external pin of the
circuit and allows skipping the latency of the
contention resolution. The request vectors are taken
from the incoming cells and sent to the contention
resolution. But while the grants are computed, the
data cells are already sent to their destinations. The
grants are sent back to the requesting ports in the
next data cell. Therefore the internal delay of the
crossbar switch is only given by the internal data
path and the time budget for the external port chips
is increased.
In addition to the two operation modes described
above, the crossbar switch can be used as a fixed
multiplexer or as an LVDS repeater. Every pair of
port interfaces can be switched together bypassing
the internal port interfaces and switching matrix.
This fixed connection is only available between
neighboring ports. It is configured via an external
pin of the circuit. The crossbar switch just works as
a LVDS repeater in this mode. Two further external
pins may be used to switch the chip into multiplex
mode (mux_mode on) and to decide where data
cells have to go (mux_select). In this mode the ports
1, 4, 7 and 10 may be switched either to the ports 0,
3, 6, 9 or to the ports 2, 5, 8, 11. Additionally, the
ports not used for this static multiplex may be used
as a smaller 4-port crossbar switch (the multiplexed
ports are not taken into account for the request-grant
protocol).

TESTFEATURES

A test controller with many system level features is
included in the crossbar switch. Therefore the
crossbar switch may be used to stimulate and
monitor a complete system. Data patterns can be
stored in 2 Kbytes RAM (1024 words x 16 bit) and
sent to any single or any group of output port chips.
This feature allows emulating a broadcast mode for
the stored patterns. The pattern can be sent once or
eternally until the test is stopped via the external
microcontroller interface. Another 2 kByte RAM is
available to monitor data at one input or output port
of the crossbar switch. Data storage may be
triggered as soon as a specific pattern has been seen

at the input of this observation RAM. All test
features are configured via the microcontroller
interface. This interface is only accessible in test
mode. In addition all output ports can be mirrored to
the data bus of the microcontroller interface to
monitor the data flow at the speed of the master
clock of the crossbar switch.

CIRCUIT DATA

The crossbar switch is designed for a Siemens 0,25
µm CMOS technology. While the LVDS interface
ports are working with 625 MHz, the core clock
frequency is 125 MHz. Running at 2.5 V the
estimated power consumption of the chip is 2W.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Charles Bry,
Mr. Reinhard Deml and Mr. Matthias Hellwig for
fruitful discussions and Mr. Jörg Gliese for the
implementation support.

REFERENCES

[1] TIA/EIA STANDARD, Electrical
Characteristics of Low Voltage Diffenrential
Signaling (LVDS) Interface Circuits, TIA/EIA-644,
March 1996
[2] A. Kirstädter, “Contention resolution for
different traffic categories in large input buffered
ATM switches”, Proceedings of IEEE ATM ’97
workshop, Lisboa, May 1997
[3] N. McKeown, M. Izzard, “The Tiny Tera: A
Packet Switch Core”, IEEE Micro, Jan/Feb. 1997,
pp 26-33

696

