
IPCCC 97, Scottsdale, Arizona, USA, Feb. 5 –7, 1997

page 1Iselt / Kirstädter

EXPERIENCES WITH A VERSATILE PROTOTYPING PLATFORM FOR

TOP–DOWN HARDWARE AND SOFTWARE DESIGN FOR COMMUNICATION

PROTOCOLS

Andreas Iselt and Andreas Kirstädter

Technical University Munich, Institute for Communication Networks

Arcisstr. 21, D–80290 München, Germany

e–mail: iselt@lkn.e–technik.tu–muenchen.de

ABSTRACT
This paper discusses a new prototyping platform for
effective protocol design and rapid prototype imple-
mentation. From specification to implementation all
steps are supported by semi–automatic tools that just
require the design specification itself plus some direc-
tives and constraints. For the hardware implementa-
tion of a prototype, a programmable core consisting of
FPGAs is realized. Thus quick changes at the redesign
of a system are possible. The hardware and the design
software of the prototyping environment are modular
and allow an easy substitution or extension of the parts
of the system. A demonstration application (of a
FDDI–on–SDH remote repeater) shows the function-
ality and effectiveness of the platform. The paper con-
cludes with an extensive discussion of the experiences
gained with the chosen top–down design approach for
high–speed reprogrammable logic.

I. INTRODUCTION
The increasing transmission capabilities of fiber–

based networks provide the possibility to deliver
broadband services (e.g. at the STM–1 level of SDH,
150 Mbit/sec) with corresponding low latencies to the
customer. Resulting from the processing speed re-
quirements the lower layers in the data path have to be
implemented more and more as (pure) hardware solu-
tions.
Another development is the globalization of markets
together with the resulting increased level of competi-
tion. They make a fast time–to–market and the ability
to quickly react to protocol changes prerequisites for
the survival of manufacturers. Often completely new
services have to be implemented (and sold) before
their standardization has been completed. Examples
are the Available Bitrate Service (ABR) and the polic-
ing function (User Parameter Control, UPC) in ATM
networks. At the extreme case, modifications of the
high–speed protocols (and not only bug fixes) have to
be implemented into equipment already in use at the
customer’s site.

Thus on the one hand, reprogrammable hardware
components (e.g. Field Programmable Gate Arrays,
FPGAs) are used more and more frequently in the de-
signs. They not only provide a shorter turn–around

time than ASICs (together with a lower level of fixed
costs) but also the ability to adapt the designs to proto-
col modifications by simply updating their configura-
tion memories. This update could even be done via the
communication network itself.

While the usage of FPGAs is nearly state–of–the–
art for the control part within those high–speed proto-
col implementations, the corresponding data path is
still commonly implemented using conventional fixed
logic: the required speed for operations like barrel–
shifting, cell/packet filtering/insertion, and buffering
is considered to exceed the capabilities of a pure
FPGA–based solution. Undoubtedly the resulting hy-
brid (reconfigurable + fixed logic) architectures are
quite unsatisfying because of their inflexibility.

On the other hand, short turn–around times also re-
quire the strict usage of top–down design techniques
and hardware description languages (with their advan-
tages of modularity and reuse of components). Fur-
thermore, the integration of synthesis techniques for
reprogrammable logic components into common CAE
environments has reached a state where a realistic top–
down design of reconfigurable logic is possible.

Therefore at our institute for communication net-
works a flexible and modular top–down prototyping
system for high–speed protocols has been designed
and tested. This prototyping system not only serves the
purposes of accelerating and simplifying the processes
of design, evaluation, and implementation of future
high–speed communication protocols. It has also been
designed (together with the demonstration application
of a remote FDDI–on–SDH repeater) to gain experi-
ences concerning the design of complete (i.e. includ-
ing the full data path) communication protocols near
the speed limits of the underlying FPGAs.

In contrast to other known approaches (see. e.g.
[10], [11], [12] for an discussion of the VLSI ”suit-
ability” of communication protocols and [4], [5],
[6], [7], [8], [9] for the usage of parallel proces-
sing platforms) our platform focuses more on the in-
vestigation of speed–critical parts and the verification
of new protocol mechanisms. Thus the platform itself
is only applicable to small protocols and protocol con-
version systems (such as e.g. the application described
in section 4). But the experiences and results (concern-

page 2Iselt / Kirstädter

ing both protocol mechanisms and the top–down ap-
proach itself) can easily be applied to large systems as
well.

After design entry (via the hardware description
language VHDL or a schematic) and subsequent func-
tional verification the protocol (including the full data
path) is automatically synthesized for the FPGA archi-
tecture at the target prototyping platform. This plat-
form consists of several modules:

� a high–speed core (XILINX FPGAs),
� electro–optical interfaces (at speeds of 125

and 155,52 Mbit/s), data parallelization/seri-
alization, SDH framing, and

� a microcontroller for configuration (of the
FPGAs and the SDH framer) and low–speed
management tasks.

For the design of the firmware and application soft-

ware a remote debugging option (on source–code lev-
el) was established.

The next section describes the modules of the hard-
ware platform together with the cross compilation sys-
tem and the remote debugging environment. In Sec-
tion 3 the top–down design approach and the applied
tools are shown. Section 4 explains the remote FDDI–
on–SDH repeater implemented as a demonstration ap-
plication. Finally results and experiences are dis-
cussed in Section 5.

II. HARDWARE PLATFORM
Figure 1 gives an overview of the hardware part of

the protoyping system. It consists of a programmable

Optical
Interface

e.g.
ATM–TAXI,

FDDI

Programmable High Speed Core

SDH
Framer

Optical
Interface

Microcontroller

Remote
Debugging

User
Interface

125 M
bit/s

15
5

M
bi

t/s

Figure 1 : Hardware platform of the prototyping environment

FPGA

FPGA

E

O

hardware core for the high speed data path and control
operations, and an optical 125 Mbit/sec interface as it
is used for FDDI or ATM–TAXI. Further, a SDH fram-
er for STM–1 (155.52 Mbit/sec) is included. The SDH
interface can be externally connected to optical and
electrical lines. For management purposes and low
speed tasks of the application a microcontroller is pro-
vided.

The hardware concept is very modular. A passive
backplane provides at least 4 identical sockets for the
insertion of modules. At the moment, there are 3 mod-
ules available. One module consists of the microcon-
troller with its peripherals. Another module combines
the high speed interfaces. The programmable high–
speed core is also located on a board of its own. The
modular implementation enables an easy incorpora-
tion of new modules and substitution of existing mod-
ules. For example, the interfaces are located on a plug–
in card, that can be easily removed from the
interconnection backplane, or replaced by a different
board, incorporating new interfaces.

Programmable High Speed Core
 The programmable high–speed core is currently

built of two XILINX XC4010E–3 FPGAs. Specified
at gate delays of 3 nsec they support system clock fre-
quencies up to around 25 MHz (because of rather high
additional internal routing delays). Each XILINX
FPGA can realize roughly 10,000 gates. For most pro-
tocols and protocol conversions this should be suffi-
cient. Especially having in mind, that slower control
tasks can easily be outsourced to the microcontroller,
and only the high performance data path operations
have to be done in the FPGAs.

FPGA programming has been implemented using
the microcontroller and its standard EEPROM based
memory. At power up or on user request, the micro-
controller loads a new configuration actively from the
memory to the FPGAs. As described below the trans-
fer of configuration data from the development
workstation to the microcontroller’s EEPROM via a

page 3Iselt / Kirstädter

serial link is supported very comfortably by the micro-
controller firmware.

ÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍ

125 Mbit/s optical IF

electroptical conversion

parallel–to–
serial

clock re-
covery

125 Mbit (5 bit, 25 MHz, electrical)

clock re-
covery

SDH framer

152.52 Mbit/s IF

electroptical conversion (optional)

149 Mbit (8 bit, 19.44 MHz, electrical)

Figure 2 : High speed data path interfaces

a) Optical Interface (FDDI, pure ATM) b) SDH Interface

serial–to–
parallel

Section 4 explains the usage of this high speed core
for a large demonstration application. While the re-
sulting capabilities and limitations are discussed in
section 5.

High–speed data path interfaces

The system provides two different kinds of data
path interfaces. The optical 125 Mbit/sec interface is
shown in Figure 2a: after the electrooptical modules
standard FDDI components do the serial/parallel con-
version to/from a 5 bit wide data path operating at 25
MHz.

The second data path interface for 155.52 Mbit/sec
(Fig. 2b) is connected to an SDH (STM–1) framer
([14][15]) that does descrambling/scrambling, par-
allel/serial conversion, and overhead processing. It is
configured by the microcontroller. The extracted pay-
load together with framing signals is then provided/
collected to/from two 8 bit wide data paths running at
19.44 MHz. The clock recovery is based on an SAW
(surface acoustic wave) filter module.

Microcontroller

The memory of the Intel 80186 device is divided
into 3 parts. EPROM memory for the system firmware
contains a basic boot kernel including routines for tar-
get debugging and system configuration. For semiper-
manent application software and configuration data
for the FPGAs, an EEPROM based memory is added.
Up to 512 kbytes RAM as working memory are availa-
ble. A serial communications controller provides two
serial ports.
The microcontroller has to process several tasks:

� configuration and control of the SDH framer
(normally at power–up) and reaction to its
error conditions

� downloading configurations into and reset-
ting the configurable hardware

� remote debugging on the source level from a
host system (via one of the serial ports)

� providing a user interface (via the other serial
port), e.g. for accepting new configuration
data that is to be written into the FPGAs

� accessing or writing back information from/
to the FPGAs via a control interface giving
the possibility to do use the microcontroller
for slower tasks and off–line processing.

III. TOP–DOWN SYSTEM DESIGN
In the previous chapter the focus has been on the

hardware part of the design platform. Now the accord-
ing top–down design environment is introduced. The
goal was to provide a flexible and easy–to–use inter-
face to admit the designer to concentrate on functional
system design, by automating the implementation pro-
cess. For this purpose a lot of tools exist in the market.
The Mentor Graphics tools have been chosen because
of their integrated environment for different design
entry techniques and for different target technologies
including printed circuit board design.

The design system mainly consists of the Idea Sta-
tion tools from Mentor Graphics and Place and Route
tools from XILINX. Figure 3 shows the top down de-
sign path. Design entry can be textual using a high lev-
el description technique. VHDL has been used up to
now, but Verilog, ABEL and other similar textual de-
scriptions are possible as well. Another more common

page 4Iselt / Kirstädter

VHDL schematic
System description

Functional simulation

Logic synthesis
& optimization

Place & Route

Timing simulation

Redesign
Changes

Configuration of FPGAs

Testing

Figure 3 : Top Down Hardware Design Process

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

Design entry

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

Offline debugging

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

Cross compilation
and linking

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

Downloading

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

Online–remote–debugging

Programmable prototype hardware

�������� ����
 ���� ��	����� ����
 ����

description technique that is also supported is sche-
matic–based design entry.

After design entry, a functional simulation is neces-
sary to verify the correct logical operation of the de-
sired system. Simulation is supported for functional
and schematic–based designs. Designs using a mix-
ture of description techniques can also be simulated.
On detection of functional misbehaviors or errors, the
system has to be redesigned until the functional simu-
lation performs with the desired functionality.

Once the functional behavior is correct, the next
step is the synthesis and optimization of the VHDL de-
scriptions to a gate level description of the system. For
this purpose, the Autologic synthesis tool from Mentor
Graphics is used. It translates the functional VHDL de-
scription to a generic hardware description at the gate
level. In a second step it maps these generics to target
hardware–specific gates or logic blocks. In this ap-
plication, a synthesis library for XILINX devices is
used that substitutes the generic gates with gates or
programmable logic blocks of the FPGA. Different
optimization directives for timing and area can be giv-
en.

The manually entered schematics together with the
automatically generated netlists from the VHDL part
are transferred to the XACT place and route software
from XILINX. XACT provides automatic placement
and routing of the design in the desired target device.
This process can be controlled by user directives on
placement of system parts and by specification of
maximum delays for some signals. XACT determines
a placement and routing from these directives and in-

ternal optimizations. It outputs a configuration file for
the FPGA and back–annotation information for the
simulation.

At this step a timing simulation can be done by
merging the backannotation containing the expected
delays with the design. Now the device can be simu-
lated including switching and propagation delays. At
this step normally no errors should occur. However, if
in some cases the simulation doesn’t perform correct-
ly, a first approach is to refine or extend the timing op-
timization directives of the place and route tool. The
second try is to focus on improvements in the logic
synthesis and optimization within Autologic. If this
still doesn’t lead to an acceptable result, unfortunately
there is no other possibility than to redesign the system
specification. Our experiences have shown that a func-
tional design, having in mind the implementation
technique and possibilities of the XILINX devices
normally leads to rather good implementation results.

When the timing simulations perform correctly, the
configuration data can be downloaded to the target
platform and tested. For test purposes the program-
mable core of the hardware platform is equipped with
several test ports directly fitting a logic analyzer sys-
tem. This makes it possible to test a lot of functionali-
ties very comfortably.

Apart from this hardware design path, software de-
sign for the microcontroller has to be done. Software
design and compilation as well as offline debugging
can be performed on a standard PC system. A very use-
ful feature of the protocol design platform is the target
debugging option. For this purpose, the kernel of the

page 5Iselt / Kirstädter

microcontroller system contains communication
mechanisms via the serial interface with the PC based
software design system. It further incorporates rou-
tines that provide control mechanisms to debug code
that is running on the target microcontroller using the
normal debugging user interface on the PC remotely

A still missing feature of the the development sys-
tem is hardware–software–codesign. At the current
state of the development tools, no hardware–software
cosimulation is provided. Future work may incorpo-
rate this useful option.

IV. A DEMONSTRATION DESIGN

A. FDDI–on–SDH repeater application
A FDDI–on–SDH remote repeater for the intercon-

nection of FDDI rings (e.g. at different customer prem-
ises) via SDH connections (Fig. 4) has been chosen as
the first demonstration design for this platform. Solu-
tions for this kind of interconnections had been pro-
posed and investigated in [1].
This example has been chosen due to its rather com-
plex operations that have to be performed in real time
and offer a good possibility to test intensively the hard-
ware platform as well as the software environment.
Further the functionality was already well known and
proven from a preceding conventional implementa-
tion [2] using discrete, standard TTL devices (show-
ing some EMC problems from the rather high clock
speeds for this technology).

FDDI
ring

FDDI–SDH
repeater

FDDI–SDH
repeater

FDDI
ring

���
��
��	�

Figure 4 : Connection of two FDDI rings via an SDH network

The coupling of the LAN rings (e.g. at different cus-
tomer premises) is done at the physical FDDI layer by
mapping the raw FDDI data stream (4B5B encoded at
125 Mbit/s) into C4 containers within the SDH STM–1
frames corresponding to the so called Super Rate Map-
ping Protocol [3]. Meanwhile this has also been con-
sidered in corresponding FDDI standards [16]. The
advantages of the repeater solution over a bridging ap-
proach is that no filtering and routing is required, thus
achieving optimal throughput and low transmission

delays. This is even more important if inter network
traffic is dominant and if FDDI rings with small num-
bers of stations are connected. The latter is typical for
today’s FDDI networks that are often serving as cam-
pus backbones.

Super Rate Mapping Protocol (SRMP)

Within the SDH framing structure (Figure 4) the
data stream can be viewed as segmented into rows of

9 bytes 261 bytes
STM–1 signal

Container floating in the STM–1 signal

Overhead

User data (260 bytes/row)

Figure 5 : STM–1 signal and container (VC4) in SDH

The FDDI physical layer data is mapped
in the data container of the SDH using the
SRMP protocol

270 bytes. The first 9 bytes of each row belong to the
section overhead. The following 261 bytes form one
row of the C4 container. Nine of these rows form an
STM–1 frame. The alignment of the container to the
overhead is indicated by a pointer (symbolized by the
small arrow in Fig. 4) as a result of clock skew. One
byte within each row of the container is reserved for
the path overhead (the remaining 260 bytes being avai-
lable for user data).

For the mapping of FDDI data, there are different
kinds of bytes defined for the transmission of 0,6,7 or
8 bits of user data. The bitrate of 125 Mbit/s to be trans-
ported in the available 149.76 Mbit/s of the SDH con-
tainers is achieved by a mapping protocol with a regu-
lar pattern of these different kind of bytes. The
detailed structure of this mapping can be found in [1]
or [3]. The FDDI network and the SDH link are work-
ing asynchronously. For both, a slight clock variation

page 6Iselt / Kirstädter

of 50 ppm is allowed. The fine–tuning of the rate
adaptation is accomplished by a variable bitstuffing
method.

FDDI clock generation on the SRMP re-
ceiving side

On the receiving side the FDDI data is extracted
from the SDH container and formed to a sequential
continuous data stream. A solution for the derivation
of the sending clock for the following FDDI link is to
use a VCO controlled by the fill level of an elasticity
buffer [1]. The main disadvantage of this solution is
the complicated implementation. Furthermore, jitter
on the FDDI line due to the varying clock may arise.
A more stable and easier implementable method has
been found in [2]. A simple, fixed frequency oscilla-
tor is used to generate the clock for the outgoing FDDI
line. The rate adaptation of the incoming SDH–based
data stream to the outgoing FDDI data stream is ac-
complished by the preamble stuffing technique of
FDDI. In FDDI data is formatted in packets of variable

length. Each packet is preceded by a preamble of nom-
inally 16 symbols (1 symbol=5 bits). Rate adaption in
FDDI is achieved by stuffing (insertion, deletion) of
preamble symbols. The applicability of this method
has already been shown in a conventional imple-
mentation of the protocol [2].

B. Implementation
For the implementation on the prototyping plat-

form, the functionalities have been described using
VHDL. This allowed an early functional simulation
and the reuse of already defined functions. For exam-
ple the mapping protocol uses the same state machine
in the mapping (sending) and demapping (receiving)
protocol entity.

FDDI–SDH–Mapper
The mapper has been partioned into 4 entities,

namely map_ctrl, fifo, shifter and stuff_ctrl. Figure 6
gives an overview of the design.

fifo

map_ctrl

shifter

stuff_ctrl

FDDI
5 bit / 25 MHz

data path

control signal

SDH
8 bit / 19.44 MHz

SDH framing info

Figure 6 : Block diagram of the FDDI–SDH–Mapper

The entity map_ctrl is a state machine representing
the Super Rate Mapping Protocol. It consists of 3
counters and a subsequent (large) decoder logic. The
use of VHDL allowed a very efficient description of
the counters as well as the decoder logic. The data ar-
riving from the FDDI network forms a continuous data
stream, but the data sent to the SDH network is for-
matted in containers with overhead. This leads to a dis-
continuous data stream requiring a fifo buffer to adapt
to the continuous stream. The FIFO is built of an array
of D–FFs. Read and write pointers are realized using
one–hot encoding. The realization of the FIFO had to
be rather tricky, because simultaneous read and write
access may occur, and read and write clocks are totally

asynchronous. Here also the VHDL description tech-
nique allowed an early simulation and debugging. The
alignment of the user data according to the SRMP as
6,7 or 8 valid bit words has been realized using a barrel
shifter. Because up to 15 bits had to be shifted, the shift
operation could not be performed within one clock
cycle. A multistage barrel shifter has been designed
using the VHDL design entry method. The stuff_ctrl
entity realizes the control of the variable bitstuffing for
FDDI–SDH rate adaption in the mapper.

Demapper
The demapper is partitioned into 5 entities. In Fig-

ure 7 the corresponding block diagram is shown. For

fifo

map_ctrl

shifter

stuff_ctrl

SDH
8 bit / 19.44 MHz

data path

control signal

SDH framing info

Figure 7 : Block diagram of the demapper

FDDI
5 bit
25 MHz

preamble_
stuffing

the mapping protocol the map_ctrl entity of the map-
per could be reused. The rate adaptation from the dis-
continuous SDH data stream to the continuous FDDI
data stream required a fifo buffer. Unfortunately the
fifo buffer from the mapper design couldn’t be reused,
because it already incorporated a part of the 5 bit to 8

bit coding. But a lot of the internal functionalities of
the mapper fifo could be reused to build the demapper
fifo.

The translation of SDH–bytes with 6, 7 or 8 valid
data bits to 5 bit FDDI symbols has been provided us-
ing a barrel shifter. As already described in the mapper

page 7Iselt / Kirstädter

section, the barrel shifter in the demapper is also real-
ized in a multistage design, because of the high num-
ber of possible shift operations. The control of the
preamble stuffing has been realized in the stuff_ctrl
entity. The stuffing of the preamble symbols is
executed in the preamble_stuffing entity.

For more detailed information on this repeater de-

sign [1] and [2] should be consulted. In the follow-
ing table an extract of the design statistics and device
utilization reports for the two FPGA devices is shown.
With 86% and 77% CLB (configurable logic block)
utilization the devices are near their limits, because
routing constraints normally do not allow to occupy all
the available CLBs.

MAPPER No. Used Max Available % Used

Occupied CLBs 345 400 86%

Bonded I/O Pins: 36 61 59%

CLB Flip Flops: 323 800 40%

3–State Buffers: 165 880 18%

DEMAPPER No. Used Max Available % Used

Occupied CLBs 311 400 77%

Bonded I/O Pins: 35 61 57%

CLB Flip Flops: 344 800 43%

3–State Buffers: 165 880 18%

V. EXPERIENCES
The use of the high level description language

VHDL simplified the design entry to a great extent. It
allowed to describe the functionalities very efficiently
and made the reuse of entities possible. For example
the map_ctrl entity of the demonstration example
could be used in both the mapper and the demapper
system. Parameterized entities (currently not yet sup-
ported by the synthesis system) will further increase
the reuse of modules. Entities that could not be reused
on an as–is basis can contribute to another design by
the reuse of their subentities (e.g. fifo of the applica-
tion example) or at least by the redesign of their source
code.

VHDL is very similar to high level languages
known from software development (PASCAL, C) thus
minimizing the learning effort. But the main drawback
comes from the operation near the timing and frequen-
cy limits of the FPGA target technology. This requires
that, in contradiction to the top–down design para-
digm, it is necessary to consider the expected synthesis
results (in the context of the target technology) already
at design entry. Our experience is that the learning of
the VHDL language and the introduction to the design
tools is rather easy and well supported by tutorials. An
unexperienced user needs about 6 weeks for this. How-
ever, the consideration of the target technology in the
design entry phase is very difficult for the first time
user, leading to an increased effort for redesigns.

The simulation tools offer the possibility for an ear-
ly detection of errors by simulation of single entities.
The simulation of the entire design allows to verify the
functionality of the new system. At this level it is only
possible to verify the functional behaviour of the sys-

tem. However, for the evaluation of the real perfor-
mance of the protoype it is also necessary to look at the
timing of the design. Due to the relatively high routing
delays within the FPGAs the timing cannot be deter-
mined before the synthesis and place & route steps
have been done. Since they normally require quite an
amount of time (more than 3 hours on a SUN
Sparc–20) the redesign loop is slowed down. Thus it
resulted to be quite advantageous to gain some experi-
ence about the target technology to be able to consider
the restrictions already at the design entry and thus
minimize the number of necessary redesign loops due
to timing problems.

The automated top–down design process can accel-
erate the path from specification to prototype resulting
in a faster verification of new ideas and thereby lead-
ing to a better time to market. The time necessary for
the system development is repartioned by this top–
down approach. As shown in Figure 8 the conventional
schematic–based design approach requires nearly no
training due to the well–known techniques. However,
the design and redesign effort is rather large (Fig 8a).
With the new top–down development the design and
redesign effort can be optimized, but a training phase
is necessary especially to consider the target technolo-
gy. New designs will be easier, due to the well known
and well configured development system. In a long
term view, the expected design times depend on the
number of designs already implemented and the expe-
rience gained (as qualitatively shown in the learning
curve of Figure 9).

The following table summarizes the expected and
the experienced properties of the top down approach
as discussed above.

page 8Iselt / Kirstädter

Design

Add. Learning

Redesign

Design Redesign Design Redesign

Design Redesign

First design Successive design

First design Successive design

Figure 8 : Partioning of the effort for different tasks in system design

a) conventional

b) new top–down approach
time

time

Expected design time

Number of designs

Conventional approach

Top–down approach

Untrained Skilled

Figure 9 : Expected design times for long term application of top down methods

�
�	�
� ��	����� ��	�
������

����	���	� ��
���� ����� ��� ���

������	��� �� ��
���� ������ ��
������

�� �� 	����
������� �� �����

����������� �� 	�
� ��
 ��

����� ���������� ������ ��
 ����	���� �������
��� ���	� �� ����� �� 	����
�
���
� �� ��������� �� ������
�����������

������� ��� �������
��	������

��	�����
 ������� ��	�������

�� �� 	����
������� �� �����
��	������

In the demonstration example the microcontroller
served only for the control of the hardware part, thus
the missing cosimulation option wasn’t too grave, but
for future applications this feature will possibly be
necessary. With the provided tools the software design
and debugging for the demonstration design (about
1000 lines C source code) could be done in 2 weeks.

VI. SUMMARY
For quick design, verification, and prototyping of

communication protocols a development environment
has been implemented. The versatile, programmable
hardware platform as well as the incorporated design
tools have been discussed. A demonstration example
together with experiences from its implementation has
shown the advantages of the technique. The easy pro-
grammability and the well supported downloading op-
tions led to quick turn–around times for redesigns. The
provided test interfaces offered extensive measure-
ment possibilities and have been used intensively. So

the functionality of the implemented system could
easily be verified.

To review the advantages of the new development
environment the main features are summarized here:

� High–level design entry (VHDL, schematic
based, others)

� High–level functional simulation
� Automated implementation process
� Versatile hardware platform allowing fast im-

plementation and redesigns due to its pro-
grammable FPGA core

� Effective design environment for control soft-
ware development

� Universal test and measurement interfaces for
comfortable debugging

With all these features the proposed development
environment is a valuable tool for the design and eval-
uation of high speed protocol systems. The main draw-
back comes from the timing restrictions of the current
FPGA technology. Future work mainly has to focus on

page 9Iselt / Kirstädter

the integration of hardware–software codesign con-
cepts. At the moment a second demonstration applica-
tion (ATM protocol conversion) is planned.

VII. REFERENCES:

[1] A. Kirstädter, J. Weingart, ”FDDI on SO-
NET/SDH Links”, EFOC, Paris 1992

[2] A. Iselt, ”Implementierung der Mapping
und Demapping Einheit eines FDDI–SDH–
Repeaters”, (English title: ”Implementa-
tion of the Mapping and Demapping Ent-
ities of an FDDI–SDH–Repeater”),
diploma thesis 1993, Technical University
of Munich, chair for communication net-
works, Prof. J. Eberspächer

[3] E.O. Rigsbee, ”Proposed Super Rate Map-
ping for ASC X3T9.5 (FDDI)”,T1X1.5 Op-
tical Hierarchical Interface Group, Febru-
ary 1990

[4] J. Schiller, T. Braun, M. Zitterbart, ”Imple-
mentation Architecture for Communication
Subsystems”, 1994 IFIP 4th International
Workshop on Protocols for High–Sped Net-
works”, Vancouver, 10.–12.August 1994

[5] J. Schiller, T. Braun, M. Zitterbart, ”Imple-
mentation of Transport Protocols Using
Parallelism and VLSI Components”, SBT/
IEEE International Telecommunications
Symposium 94, Rio de Janeiro, 22.–25.Au-
gust 1994

[6] J. Schiller, T. Braun, ”VLSI–Implementa-
tion Architecture for Parallel Transport
Protocols”, IEEE Workshop on VLSI in
Communications, Stanford Sierra Camp,
Lake Tahoe, CA, USA, 15.–17. September
1992

[7] M. Kaiserswerth, ”The Parallel Protocol
Engine”, IEEE/ACM Transactions on
Communications, vol. 1, no. 6, December
1993

[8] A.S. Krishnakumar, W.C. Fischer, K. Sab-
nani, ”The Programmable Protocol VLSI
Engine (PROVE)”, ICC 1992, June 1992,
Chicago, USA

[9] A.S. Krishnakumar, J.G. Kneuer, A.J.
Shaw, ”HIPOD: An Architecture for High–
Speed Protocol Implementations”, 4th IFIP
conference on high performance network-
ing, 14.–18.December 1992, Liège, Bel-
gium

[10] D.C. Feldmeier, ”A Framework for Archi-
tectural Concepts for High–Speed Commu-
nication Systems”, IEEE JSAC, vol. 11, no.
4, May 1993

[11] D.C. Schmidt, T. Suda, ”Transport System
Architecture Services for High–Perfor-
mance Communications Systems”, IEEE
JSAC, vol. 11, no. 4, May 1993

[12] T.F. La Porta, M. Schwartz, ”Architectures,
Features, and Implementation of High–
Speed Transport Protocols”, IEEE Net-
work Magazine, May 1991

[13] Am 79865 and Am 79866 Data Sheets, Ad-
vanced Micro Devices Corp., Sunnyvale
CA, USA, 1992

[14] SYN155 Data Sheet, TranSwitch Corp.,
Shelton CT, USA, 1995

[15] SOT–3 Data Sheet, TranSwitch Corp.,
Shelton CT, USA, 1995

[16] ANSI X3.148, FDDI physical layer proto-
col specification (PHY)

