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This paper studies the main differences, in terms of simulation results, between
two network simulator tools (ns-2 and IKRSimLib). We discuss our experience
using these simulators for studying the TCP behavior in different network condi-
tions: Varying bottleneck buffer size, bottleneck link bandwidth, number of TCP
sources and packet loss probability. Simulating the same network model, we
measured the performance in terms of throughput to understand the different
TCP implementations in the two software libraries.
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1 Introduction

Simulators are an important instrument to study networks behaviour and networks design, because
they allow us to compare different alternatives and evaluate their performance under well-known
conditions including a very large parameters range, which is not possible in the real-world.
In the context of computer networks we can affirm that a simulator has the purpose to capture the
behaviour of a hypothetical system with the aim to help researchers on their work.
A simulator has the following properties [3]:

� It allows to create an approximated model of a real system, which is used to study system
behaviour in certain conditions.

� The working conditions are well-known and well-defined, repeatability is necessary to under-
stand events.

� In a discrete simulator variables change at discrete time between discrete values, computer
networks are discrete by nature so discrete simulators are used to describe them.

Due to the fact that a lot of simulation tools exist and each one is developed independently, it is
important to understand the differences among them. This makes it possible to compare the results
and derive conclusions from different tools. As a matter of fact, simulating TCP is difficult because
of the wide range of variables, different implementations and enviroments available [4]. Moreover,
there are so many subtleties in TCP’s mechanism that before starting a simulation (network model
setup phase) it is very important to define what we want simulate, choosing right network elements,
connect them and decide in which conditions they have to work.
For this reason we could be sure that if we would try to simulate the same model with two different
tools, we will never obtain the same results.
In this paper we consider two simulation tools: ns-2 (network simulator version 2) and IKRSimLib
(simulation library), we give a short description of them, explain the network model used and present
some simulation results.

2 Network simulator ver. 2

Ns-2 is a discrete-event simulator completely free and open source, developed in UC Berkeley, writ-
ten in C++ with an OTcl interpreter as a frontend.
The main part of this simulator is the scheduler, that is a particular object which schedules events
during the simulation (discrete-event) and therefore manages the real time of the simulation [2]. To
work with ns-2 we first have to install it and then run it with the shell command:

ns � script_name � .tcl

Writing an OTcl script is necessary to define a simulation scenario. By this script ns-2 receives all
needed informations to start the simulation, such as nodes definition and interconnection, communi-
cations between applications through their transport agents (e.g. TCP) with related parameter, and
definition of events that may occur during the simulation.
Objects used in the script belong to OTcl class hierarchy and have a one-by-one correspondence in
C++ class hierarchy through the OTcl interpreter which translates the commands written in OTcl to
their equivalence to the C++. Therefore the user can create a network scenario as if the simulator is
written entirely in OTcl, and there is no need to know the C++ hierarchy, since the OTcl interpreter
does this job for us, at least until when we want to create a new class.
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It is possible to extend the simulator in two ways by inserting new classes:

� Using C++ code: This method is the most efficent, because the C++ code represents the core
of the simulator and by it we are able to modify and access every class variable or function, or
derive every kind of object in the C++ hierarchy.

� Using OTcl code: This method is less efficent than the previous one, because from OTcl level
we are not able to access many class variables and functions defined at C++ level.

Moreover, through the Tcl script it is possible to extract results from the simulation:

� At any moment during the simulation we can read certain variables of an object and process
them with an OTcl procedure to obtain the desired result or simply write them to standard output
or to a file.

� Using particular measurament object called monitor and trace object:

Monitor objects : Used to get particular statistics concerning packets traffic through an object
(exploiting integrator class), or to get particular counters, such as packet arrivals, depar-
tures or drops.

Trace objects : Record every event for each packet at a queue or at a link, such as an arrival, a
departure, etc. . . , together with the time at which the event occurs, and write all into a file
to be post-processed.

Ns-2 can be downloaded from the Internet [1] and the all-in-one version includes some useful tools,
such as nam (network animator) and Xgraph which are software package used for the visualization of
results.

3 Simulation library

Simulation library is a C++ class library which is used for event-driven simulations in the communi-
cation networks field.

To setup a simulation we first have to define the simulation model. To do this we can use all allowed
C++ programming ways, for example writing two C++ files ( � model � .cpp and � model � .h) exploit-
ing simulation library classes and functions. In this phase we mainly define network model layout,
and we could also specify object parameter that do not change in all our simulations. Once created
the model we have to write the “main” file which has the purpose to setup the simulation (managing
events, input parameters and result output) using particular classes [5]. Written this three basic files
we can compile them with a “makefile”, to do this it is possible to use a template file. To control the
simulation the “main()” function usually receives two files as input: � model � .fmt, used to define the
format which the results will be printed, and � model � .par used to initialize the parameters of indi-
vidual model components that could change from a simulation to another. Moreover, it is necessary
to specify in the main() the output file ( � model � .log) where results will be printed.

Now we can start the simulation running the executable file with its parameters files:

� file_exe_name � � model � .par � model � .fmt � model � .log

3



In the simulation library there are different classes of measurement objects that enable to extract
results from the simulation. They are divided in two categories:

Filters : Used to observe the packets that are passing through a point or to modify an attribute of this
packets.

Meters : Used to make statistical measurements, e.g. between to points in the network.

In order to reproduce stochastic processes in the simulation model, such as arrival process or ser-
vice process, the simulation library offers a very large variety of pre-defined distribution functions to
generate random variables.

4 The simulation model

The generic network model which has been simulated with both software tools is sketched in Fig.1
and represents a very simple network scenario. We want to capture the TCP behavior differences
between the two simulators, varying some of the main network variables.

TCP sender set TCP receiver set

bottleneck link

access 
link

...
...

A

TCP
Reno

Ba

Bb

access 
link

data  

ACK
B

TCP 
Sink

FIFO 
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Figure 1: Network scenario

This model consists of:

� A TCP sender set: Composed of a variable number of TCP sources (Reno version), each one
connected to the network through an access link with speed ��� in the uplink direction, and
through an “ideal” link (infinite bandwidth and null propagation delay) in the reverse direction.

� A network: Composed of two simplex links, one for the DATA path (bottleneck link) and one
for the ACKnowledgements path, both with the same speed ��� and the same propagation delay.
For the DATA path we assumed a Bernoullian packet loss probability with parameter � and a
FIFO queue with dimension 	�
 .
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� A TCP receiver set: Composed of TCP receivers (Sink Delayed ACK version), each one con-
nected to a different TCP sender agent and accessing to the network through an “ideal” link
(infinite bandwidth and null propagation delay).

Connected to each TCP sender agent there is a so called greedy source, representing an application that
delivers to the TCP agent always the amount of data that it can sent according to the TCP algorithm.
So the TCP ingress buffer is always full.

Obviously this model is generic, because of every simulator implements each component in a different
way.

5 Simulation results

Our simulations measured the total throughput, i.e. the number of TCP segments arrived at the
receiver set in a certain time.

To perform this throughput measurement, in ns-2 we used a monitor inserted on the bottleneck link
queue which is able to count packets that cross the link. In Simulation Library we used a meter on
TCP receiver set which counts the arrived packets.

The first diagram (Fig.2) shows the throughput measured in both simulators as a function of the
packet loss probability � with ��� =2 Mbit/s, �� =10Mbit/s, infinite buffers and one TCP source. The
throughput is upper limited by the access bandwidth (250 Byte/ms correspond to 2 Mbit/s) and de-
creases with packet loss probability because of the TCP congestion control. The two curves almost
completely overlap for small � values, and for � >0.01 they start to differ. This gap increases with � .

As we will see, ns-2 throughput curves (ns) always stay below IKRSimLib throughput curves (SL).

The main behaviour remains the same if we change the access bit rate, as depicted in Fig.3. But in
this case the maximum throughput is greater and limited by the TCP congestion control algorithm
that does not allow a throughput saturation to the access bandwidth value (5 Mbit/s correspond to 625
Byte/ms). For � >0.01 the throughput behaviour does not depend on the access bandwidth value ��� ,
as well as the gap between IKRSimLib and ns-2 curves.

In the critical range of � values (greater than 0.01) the implementation of TCP algorithm behaves in
different way in the two tools, and for � on the order of 10% we observed an error around 50%. So in
this range we can consider the results obtained with two tools not comparable.

As a first reason of this gap between the two tools, we observed that ns-2 implements the TCP algo-
rithm measuring the window and the slow start threshold in packets (also called segments) whereas
in IKRSimLib they are managed in Bytes. This could be the main reason of the gap, because for
high values of � the dynamics of the congestion window is emphasized and it is very probable that it
works with not integer values. Slow start threshold remains at low values and the TCP works most of
the time in congestion avoidance. This phenomenon has a worse consequence in ns-2, which counts
the window in packets, than in IKRSimLib, which counts the window in Byte. As a matter of fact,
IKRSimLib has a better granularity than ns-2 measuring the amount of data that can be sent by the
TCP agent at each round on the network. Regarding this we did not find any standard specifications,
thus both tools implement TCP in a right way.
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Figure 2: Throughput as a function of packet loss probability, with � � =2 Mbit/s, ��� =10 Mbit/s, infinite buffers
and one TCP source.
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Figure 3: Throughput as a function of packet loss probability, varying � � , with ��� =10 Mbit/s, infinite buffers
and 1 TCP source.
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In the next graph (Fig.4) we kept all the network parameters fixed and varied only the number of TCP
agents at the sender and receiver sets. The throughput curves have a saturation due to ��� for small �
and they increase proportionally with number of TCP connections, up to a value of five TCP sources
where the total throughput is limited by the bottleneck link bandwidth ��� (10 Mbit/s correspond to
1250 Byte/ms). The effect of � on the gap between the two tools is the same observed above, and it
is emphasized due to aggregate traffic. The gap increases almost proportionally with the number of
sources, and this means that this effect acts in the same way on each source.
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Figure 4: Throughput as a function of packet loss probability, varying number of TCP connections. With
� � =2 Mbit/s, ��� =10 Mbit/s, ��� =200 packets.

Reducing the bottleneck buffer size, for example to five packets (Fig.5), we observe a further gap
increase, especially for � <0.01. This is due to the fact that a small buffer size increases the total packet
loss probability, in particular for a number of TCP sources greater than five, where we experienced a
buffer overflow. In the cases of one, two and five sources the behaviour does not change because there
is not a buffer overflow. Moreover, the further gap increase is observable only for values of � smaller
than 0.01, because for greater values the TCP dynamics does not allow a buffer filling.

Again, in scenario of Fig.5 the total maximum throughput for fifty and ten sources has not a saturation
at �� , but it is lower, limited by the TCP congestion control. We can also observe that the best case
for maximum throughput is with five sources, where it is possible to achieve a saturation at ��� for
� =0.0001. We represented this phenomenon in Fig.6, where we studied the throughput behaviour
together with the goodput as a function of the number of TCP sources for extreme cases of � and with
a small bottleneck buffer size ( 	�
 =3 packets). This study was made only for IKRSimLib tool, because
we already know the ns-2 behaviour.
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Figure 5: Throughput as a function of packet loss probability, varying number of TCP connections. With
� � =2 Mbit/s, ��� =10 Mbit/s, ��� =5 packets.

Goodput is the amount of data delivered from the TCP agent to the application layer in a certain time.
We compared throughput and goodput to understand whether there was a difference measuring one or
the other. We concluded that there is no difference, they have the same behaviour unless for the fact
that goodput is lower because it excludes the retransmitted packets.
For very small bottleneck buffer size, and for small � values, the maximum number of TCP sources
that allow to achieve the maximum throughput (limited by ��� =1250 Byte/ms) is five. As a matter of
fact, in this case we have five source that transmit at their maximum (single throughput limited by
�� =250 Byte/ms), and we also do not have a buffer overflow because the bottleneck link can serve all
access link. Increasing the number of access links we exceed the bottleneck link capacity and create
packet overflow (Fig.7).
As we mentioned above this overflow effect is emphasized for small packet loss rate on the bottleneck
link (� ), because of the TCP window dynamics. For � =0.1 each source is strictly limited by its TCP
agent and the total throughput increase is less aggressive.
Considering again the case with � =0.0001 in Fig.6, the throughput behaviour for one, two and five
TCP sources is clear, because it grows linearly with number of sources. If the number of sources is
greater than five we have a buffer overflow and the congestion control has a strong impact on single
source throughput. For every scenario with more than five sources the total throughput is limited by
the TCP algorithm but it grows if the number of sources increases.
To explain better the impact of the bottleneck buffer, we also present the previous diagrams but with
	�
 =200 packets (Fig.8, 9).
As we mentioned above a finite bottleneck buffer introduces a further packet loss probability due to
overflow. Therefore there are two packet loss components not statistically independent, and the total
packet loss measured is not simply the sum.
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For the scenario with 	�
 =200 packets and for � =0.0001, we can consider � as the total packet loss
probability up to ten TCP sources, because for a greater number of sources (Fig.9) the component
due to the overflow is not negligible, and the real packet loss rate is greater than � . With � =0.1, �
represents in all cases the real packet loss probability.

Fig.10 presents the same results from Fig.4 in a different view. It shows how the throughput gap
between ns-2 and IKRSimLib increases with the number of TCP connections for different values of
packet loss probability � , fixed ��� =2 Mbit/s, �� =10 Mbit/s and bottleneck buffer size to 200 packets.
The total throughput is upper bounded by the bottleneck link bandwidth ��� , and the curves with
higher loss probability stay always below.
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Figure 10: Throughput as a function of TCP connections number, varying packet loss probability. With � � =2
Mbit/s, ��� =10 Mbit/s, ��� =200 packets.

The next four graphs (Fig.11, 12, 13, 14) represent throughput as function of bottleneck buffer size,
varying the number of TCP sources, for different packet loss probability.

In Fig.11 we can observe that for reasonable buffer size values (greater than 10 packets) and for
� =0.0001, ns-2 and IKRSimLib have a good fit. The maximum throughput is achieved with five TCP
sources. For smaller buffer size the throughput decreases (ten and fifty TCP sources curves) and the
gap increases, because of larger total packet loss probability values.

Again we can observe that the gap between ns-2 (ns) and IKRSimLib (SL) increases with packet loss
probability � , and ns-2 throughput is always lower than IKRSimLib throughput.

For increasing values of � , whereas the gap increases, we can see a general decrease of the throughput
upper bound, limited by the TCP congestion control.
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Figure 13: Throughput as a function of bottleneck buffer size, varying TCP sources number. With � � =2 Mbit/s,
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Resuming the performance measured we can conclude that considering � as the total packet loss
probability, in the worst case (� =0.1) ns-2 differs from IKRSimLib of about 49%, for � =0.05 of about
30%, for � =0.01 of about 3%, whereas for � <0.01 the two tools fit very well.

We observed a strange behaviour for IKRSimLib in the particular case of five TCP sources: With very
small buffer size ( 	�
 =2 packets), the throughput does not decrease and there is not buffer overflow.
This means that the five sources never transmit packets to the bottleneck link all at the same time, but
this is not a real behaviour. About ns-2 we experienced a throughput decrease for 	�
 =2 packets, and
also analyzing the queue implementation we realized that in ns-2 setting a buffer size of � packets
means to have a queue dimension of �! #" packets. This fact is mentioned in the ns-2 manual as a
note and the explanation is that according to the queueing theory a queue with a dimension of one
packet does not work. Thus the minimum dimension for a queue is two packets. In IKRSimLib we
experienced that a queue with one packet dimension works anyway.

As last graph we present the measurement of simulation duration for a particular case (Fig.15), varying
the number of TCP sources. We simulated both models for the same simulation time, i.e. 1500
seconds, and on the same machine with a 1,5GHz processor and 2GByte memory.
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Figure 15: Simulation time comparison as a function of TCP number sources, with � � =2 Mbit/s, ��� =10 Mbit/s,
��� =200 pkts and � =0.0001.

For values up to five sources the duration of the simulation grows steeply and ns-2 is always twice
faster than IKRSimLib. It seems that IKRSimLib has a saturation simulating more sources while ns-2
has a almost linear increase. Therefore, IKRSimLib becames much faster than ns-2 if we simulate a
large number of sources. The difference between ns-2 and IKRSimLib seems to be rather large and
moreover we have to consider that in IKRSimLib we used meters for every connection to measure a
large set of single statistics, instead in ns-2 we used only a monitor on the bottleneck queue to measure
total throughput. In IKRSimLib we compiled the code with the optimized version and in ns-2 we did
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not use any particular strategies to save simulation time1 because one of them did not work2 and the
others required to learn particular programming techniques.

6 Experience running simulations

Since the used simulators are implemented in different ways, we encountered some difficulties putting
both in the same conditions. We already discussed about some different parameters in TCP imple-
mentation, but more than the parameters, the largest difference is that ns-2 implements TCP algorithm
measuring some variables in “packets” (e.g. congestion window, receiver advertised window, slow
start threshold, buffer size, . . . ), whereas in IKRSimLib all data variables are expressed in “bytes” and
time variables in “ms”. Therefore to give the same parameter to both simulators we converted all
variables from one unit to another.

Moreover, in ns-2 every link is composed of a queue, a bit-rate and a propagation delay. Thus if
the first bit of the first packet in the queue enters the link at the instant $�%'&(
*)*+ , the last bit leaves
the queue after a transmission time equal to packet_size[bit]/bit_rate[bit/s]. The scheduler assumes
the packet arrival event when the last bit arrives at the other side of the link. Therefore from the
departure event to the arrival event there is a time equal to transmission_time+propagation_delay. In
IKRSimLib we can consider or not the transmission time (or service time) by using particular queue
classes. So, in the IKRSimLib simulation model, to include the additive delay present in each link of
ns-2 and not present in IKRSimLib non-queued links, we added on the reverse path a delay equal to
the sum of packet service times on each link crossed in ns-2 model. Probably this delay is negligible,
because it regards only the ACKnowledgements that have a dimension of 40 Bytes.

The big disadvantage using ns-2 is that it needs a deep knowledge of two programming languages:
OTcl and C++, whereas using IKRSimLib we need only a C++ knowledge.

In my opinion the best feature of IKRSimLib torwards ns-2 is the large distribution probability li-
brary, which together with meter classes allows to make every kind of statistical measurements sim-
ply connecting the meter between the measurement points. Making statistical measurements in ns-2
I encountered many difficults due to some bugs also reported on ns-mailinglist. Moreover, particu-
lar statistical measurements in ns-2 need to post-process a trace file that has a typical dimension of
hundreds of MBytes.

The great advantage using ns-2 regards the very large community that use this simulation tool, due to
this you can compare results with many other people and find many solutions on the Web.

7 Conclusions

In this paper we compared TCP implementation in two network simulator tools (ns-2 and IKRSimLib).
According to simulation results we realized that the two tools behave in the same way for values of
the total packet loss probability lower than � =0.01, whereas for � values greater than 0.01 there is a
rather large difference between the two TCP behaviours that increases with packet loss probability. In
particular the ns-2 throughput is always smaller than the IKRSimLib throughput, with errors included
in a range from 3% (for � =0.01) to 49% (for � =0.1). We tried to explain this with the different
implementation of TCP algorithm, because of ns-2 measures congestion window in packets, whereas
IKRSimLib in Bytes.

1Explained in ns-2 official web site at the link “Tips and statistical data for running large simulations in ns”
2Probably a ns-2 bug about the OTcl function “remove-all-packet-headers”
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A OTcl script used in ns-2 simulations

set ns [new Simulator]

set SIM_TIME 1500.0; # in sec

set TCP_AGENT %%NOS

set Bf 10; # Mbit/s
set Ba 2; # Mbit/s

set p %%pLoss
set Buff_Size %%bs

set delay 100; # in ms
set h_delay [expr $delay/2]

set ran_del [new RandomVariable/Uniform]
$ran_del set min_ 0.0
$ran_del set max_ 0.100

#---------------------TRACE FILES-----------------------------
#set nam_f [open out.nam w]
#$ns namtrace-all $nam_f

#set trace_f [open out.tr w]
#$ns trace-all $trace_f

#set eventfile [open eventfile.tr w]
#$ns eventtrace-all $eventfile
#-----------------------------------------------------------------------
#Trace set show_tcphdr_ 1
#-----------------------------------------------------------------------
Agent/TCP set packetSize_ 1500; # Byte (1460 MSS + 40 TCP/IP_header)
Agent/TCP set maxcwnd_ 32; # in SEGMENTS
Agent/TCP set window_ 43; # receiver advertised window (fixed)
Agent/TCP set windowInit_ 2; # initial/reset value of cwnd_ (default)

Agent/TCP set rfc2988_ false
Agent/TCP set minrto_ 0
Agent/TCP set maxrto_ 10

Agent/TCP set tcpTick_ 0.200

Agent/TCP set rtxcur_init_ 1
Agent/TCP set rttvar_init_ 0
Agent/TCP set srtt_init_ 1

Agent/TCP set ssthresh_ 32; #initial value

Agent/TCP set syn_ false
#---------------------------------------------------------
#---------------------------------------------------------
#Agent/TCPSink set packetSize_ 40; #default
Agent/TCPSink/DelAck set interval_ 0.200
#---------------------------------------------------------
#--------------------------
Queue set limit_ 9000000000000000000000000
#Queue/DropTail set queue_in_bytes_ false
#--------------------------

set entry_node [$ns node]
set exit_node [$ns node]

set fLink_DATA [$ns simplex-link $entry_node $exit_node [set Bf]Mb [set h_delay]ms DropTail]
set fLink_ACK [$ns simplex-link $exit_node $entry_node [set Bf]Mb [set h_delay]ms DropTail]

$ns queue-limit $entry_node $exit_node $Buff_Size

set loss_module [new ErrorModel]
$loss_module set rate_ $p
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$loss_module unit pkt
$loss_module ranvar [new RandomVariable/Uniform]
$loss_module drop-target [new Agent/Null]

$ns link-lossmodel $loss_module $entry_node $exit_node

for {set cont1 0} {$cont1 < $TCP_AGENT} {incr cont1} {

set tcp($cont1) [new Agent/TCP/Reno]

set app($cont1) [new Application/FTP]
$app($cont1) attach-agent $tcp($cont1)

$ns at [$ran_del value] "$app($cont1) start"
$ns at $SIM_TIME "$app($cont1) stop"

set TCP_node($cont1) [$ns node]

$ns attach-agent $TCP_node($cont1) $tcp($cont1)
$ns at $SIM_TIME "$ns detach-agent $TCP_node($cont1) $tcp($cont1)"

set Sender_Access_Link($cont1)
[$ns duplex-link $entry_node $TCP_node($cont1) [set Ba]Mb 0ms DropTail]

set sink($cont1) [new Agent/TCPSink/DelAck]

set SINK_node($cont1) [$ns node]

$ns attach-agent $SINK_node($cont1) $sink($cont1)
$ns at $SIM_TIME "$ns detach-agent $SINK_node($cont1) $sink($cont1)"

set Receiver_Access_Link($cont1)
[$ns duplex-link $SINK_node($cont1) $exit_node 1e25Mb 0ms DropTail]

$ns connect $tcp($cont1) $sink($cont1)

}

set queue_fLink [$ns monitor-queue $entry_node $exit_node [$ns get-ns-traceall]]

set integ [$queue_fLink get-pkts-integrator]

proc print {} {
global ns queue_fLink SIM_TIME p TCP_AGENT Ba Bf delay h_delay Buff_Size integ

set IntegraleQ [$integ set sum_]
set mean_queue_length [expr $IntegraleQ/$SIM_TIME]

set p1_arr [$queue_fLink set parrivals_]
set p1_dep [$queue_fLink set pdepartures_]
set p1_drops [$queue_fLink set pdrops_]

set b1_arr [$queue_fLink set barrivals_]
set b1_dep [$queue_fLink set bdepartures_]
set b1_drops [$queue_fLink set bdrops_]

set pkts_of [expr $p1_arr - $p1_dep]
set byte_of [expr $b1_arr - $b1_dep]

set pkts_err [expr $p1_drops - $pkts_of]
set byte_err [expr $b1_drops - $byte_of]

set throughput_B_ms [expr [expr $b1_dep - $byte_err]/[expr $SIM_TIME*1000]]

puts " "
puts " "
puts " Number of segments arrived at the Entry node = $p1_arr "
puts " Number of segments leaved the Entry node = $p1_dep "
puts " "
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puts " Number of total segments lost = $p1_drops "
puts " Number of segment lost by queue overflow = $pkts_of "
puts " Number of segments lost on fLink = $pkts_err "
puts " "
puts " Number of Byte arrived at the Entry node = $b1_arr Byte"
puts " Number of Byte leaved the Entry node = $b1_dep Byte"
puts " "
puts " "
puts " "
puts " Number of Sources = $TCP_AGENT "
puts " Single access bandwidth = $Ba Mbit/s"
puts " Bottleneck bandwidth = $Bf Mbit/s"
puts " Bottleneck Buffer Size = $Buff_Size pkts"
puts " Network delay = $h_delay + $h_delay = $delay ms"
puts " Segment loss probability (p) = $p"
puts " "
puts " "
puts " Mean Bottleneck Queue Length = $mean_queue_length (in packets)"
puts " "
puts " Throughput = $throughput_B_ms Byte/ms"
puts " "
}

$ns at $SIM_TIME "print"
$ns at $SIM_TIME "finish"

proc finish {} {
puts [exec date]

exit 0
}

puts "running ns..."
puts [exec date]

$ns run

B Parameter file used in IKRSimLib simulations

{

// SimulationControl {
// Batches = 10;
// BatchCalls = 10000;
// TransientCalls = 10000;
// }

TransientTime = 1;
BatchTime = 100000; // 1500 sec simulation
NoOfBatches = 15;

SenderSet {
NoOfSenders = %%NOS;

GreedyGenerator {
// BlockSize = 4096;

OffsetDist { Uniform { LowerBound = 0; UpperBound = 100; }}
}
TCPSender {

Version = "Reno";
MSS = 1460;
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TCPIPHeaderLength = 40;
InitialCWnd = 2920; // in Byte (2 seg)
InitialSSThresh = 46720; // in Byte (32 seg)
InitialRTT = 1000; // in msec (1 sec)
MaxCWnd = 46720; // in Byte (32 seg)
DupACKThreshold = 3;
TimerGranularity = 200; // in msec (0.200 sec)
SWSATimerValue = 5000;
MaxRTO = 10000; //in msec (10 sec)
MaxBackoff = 64; // ... in ns setted to 64 (original 256)
Nagle = false;
GoBackN = true;
Karn = true;
FlightSizeRecovery = false;
RenoConservation = true;
ImmediateBackoffReset = false;

// Debug;
}
NetworkAccess {

BufferSize = -1;
ServiceRate = 250; // 250 Byte/ms -> (2 Mbit/s); 625 Byte/ms -> (5Mbit/s);

}
}

ReceiverSet {
NoOfReceivers = %%NOS;

TCPReceiver {
MSS = 1460;
TCPIPHeaderLength = 40;
BufferSize = 65636;
DelayedACK = true;
ACKDelayTime = 200;
SendPeriodicACKs = false;
PeriodicACKInterval = 1000;
ACKSchedulingDelay = 0;
MinUserBlockSize = 1;
MaxUserBlockSize = 65636;
UserBlockProcessingDelay = 0;

// Debug;
}

// NetworkAccess
// {
// ServiceRate = 1.25e4; // 100 Mbit/s
// }

// PropagationDelay = 100; // [in ms]
}

// Link {
// BufferSize = -1; // original 66 packets (-> 100000:1500)
// ServiceRate = 1250; // -> 10 Mbit/s
// }

SimplexDelayLink_DATA {
QueueServer {

BufferSize = %%bs;
ServiceRate = 1250; // 10Mbit/s
}
Delay = 50;

}

SimplexDelayLink_ACK {
QueueServer {

BufferSize = -1;
ServiceRate = 1250;
}
Delay = 50+40/1250+40/250;

}
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Dropper {
DropProb = %%pLoss;

}

PacketDelayMeter {
ArraySize = 100;
LowerBound = 0;
UpperBound = 100;

}
}
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