

MULTIPATH TRANSPORT CHALLENGES AND SOLUTIONS

Michael Scharf, Thomas-Rolf Banniza October 2011

Supported by the German-Lab project NETCOMP funded by the German Federal Ministry of Education and Research (BMBF).

MOTIVATION TCP-BASED MULTIPATH TRANSPORT

- **Challenge**: Multipath transport in the Internet
 - Aggregation of capacity for terminals with more than one interface (e. g., LTE+Wifi)
 - Extension of Transmission Control Protocol (TCP) to deal with multiple subflows
 - → "Network MIMO" is a missing feature

- Potential solution: Multipath TCP
 - New TCP-based multipath transport protocol with several subflows
 - Resource pooling of different paths
 - Assumption: At least one multi-addressed endpoint (multi-homed device)
 - Backward compatible to current TCP, in particular same socket API
 - → Ongoing IETF standardization in MPTCP WG

A MULTIPATH TRANSPORT SHIM LAYER MULTIPATH TRANSPORT DESIGN SPACE

Option encoding

Shim layer

- MPTCP: IETF solution
- TCP extension adding multipath transport capability for unmodified applications
- New TCP options, consuming large part of scarce TCP option space
- Tight integration in TCP/IP stack
- → draft-ietf-mptcp-multiaddressed

- MCTCP: Multi-Connection TCP
- Hybrid approach combining a minimal TCP extension and an app protocol
- Simple and extensible type-length-value (TLV) encoding whenever possible
- Shim-layer implementation possible
- → draft-scharf-mptcp-mctcp

A MULTIPATH TRANSPORT SHIM LAYER MPTCP MESSAGE SEQUENCE DIAGRAM

→ Payload encoding outside initial subflow (used also for fallback)

· · Alcatel · Lucent

A MULTIPATH TRANSPORT SHIM LAYER COMPARISON OF MPTCP AND MCTCP

	Option encoding (MPTCP)	Shim layer (MCTCP)
Signaling connection setup	TCP options	TCP options
Signaling during session	TCP options	TCP payload
Extensibility	Difficult	Simple
Dropped/striped options in SYNs	Fallback	Fallback
Dopped/striped options outside SYNs	Fallback or failure	Not affected
Protocol helpers (e. g., NAPT)	Simple	Difficult

LINUX IMPLEMENTATION COMPLEXITY AND LESSONS LEARNT

- Minimal Linux 2.6.32 kernel patch: 800 lines of code
- **Shim layer library**: 5000 lines of code (baseline protocol)
- Challenges for shim approach: Memory copies, flow control, blocking calls

PERFORMANCE RESULTS EVALUATION METHODOLOGY

- Testbed setup
 - Two computers with Linux Ubuntu 10.04 running patched kernel
 - Two disjoint 10 Mbit/s Ethernet links, optionally also Wireless Local Area (WLAN)
 - Delay and packet loss by Linux "netem" tool
- TCP stack parameters
 - CUBIC congestion control, unless mentioned otherwise
 - Socket buffer size set to 262144B to prevent limitations by the TCP flow control
 - Other TCP stack parameters are set to the default values
- Applications
 - Simple client and server programs written in C
 - Also tests with a real video streaming application (VLC player) and a HTTP server

PERFORMANCE RESULTS EFFICIENCY OF RESOURCE POOLING

→ MCTCP dynamically pools the available bandwidth of several paths

· Alcatel·Lucent 🥠

PERFORMANCE RESULTS DEALING WITH LINK OUTAGE

→ Compensation of path failures transparent to applications

PERFORMANCE RESULTS PERFORMANCE OVER CONGESTED LINKS

→ Possible support of a coupled congestion control for fairness

PERFORMANCE RESULTS CONGESTED REVERSE PATH

→ No significant impact by reverse path congestion even with DATA ACKs

PERFORMANCE RESULTS BELL LABS OPEN DAY DEMO 2010

→ Multipath HTTP-based video **streaming without interruptions**

MULTIPATH CHALLENGES MULTIPATH: QUO VADIS?

- Multipath use cases
 - Multi-interfaced wireless devices: Vendor support?
 - Data centers: Benefit?
 - What else? Benefit only for several roughly equal paths...
- Protocol design issues
 - MPTCP specification is still a moving target
 - Additional complexity (checksums etc.), TCP option space limitation
 - Currently one major MPTCP implementation only
- Fundamental questions
 - Multiple addresses ≠ multiple paths
 - Simple, robust algorithms for many degrees of freedom

MULTIPATH CHALLENGES IMPACT ON CAPACITY SHARING?

- Question: Would multipath fundamentally affect capacity sharing?
 (assuming widespread deployment)
- Well, not necessarily...
 - Multiple paths are seldom
 - No benefit for short flows, bulk data download does it today (e. g., P2P)
 - Even without congestion control coupling still somehow similar to single-path TCP
 - Capacity sharing is mostly a network task
 - Scheduling policies
 - Per-subscriber queues
 - Deep packet inspection (DPI) in border/edge routers
 - ...

CONCLUSION AND OUTLOOK MULTIPATH CHALLENGES AND SOLUTIONS

Conclusion

- Multi-Connection TCP (MCTCP): A multipath transport shim layer
 - Simple, extensible and robust
 - Alternative to a Multipath TCP solution only using option encoding
- Evaluation of MCTCP
 - Limited implementation complexity
 - Efficient resource pooling of several paths, including congestion control coupling
- Multipath transport: Quo vadis?

Outlook

- Performance comparison with other multipath transport protocols
- More complex setups (e. g., larger topologies, German-Lab platform)

Reference: M. Scharf, T.-R. Banniza, "MCTCP: A Multipath Transport Shim Layer", Proc. IEEE Globecom, 2011

www.alcatel-lucent.com