MULTIPATH TRANSPORT
CHALLENGES AND SOLUTIONS

Michael Scharf, Thomas-Rolf Banniza
October 2011

Supported by the German-Lab project NETCOMP funded by the German Federal Ministry of Education and Research (BMBF).
MOTIVATION
TCP-BASED MULTIPATH TRANSPORT

- **Challenge**: Multipath transport in the Internet
 - Aggregation of capacity for terminals with more than one interface (e.g., LTE+Wifi)
 - Extension of Transmission Control Protocol (TCP) to deal with multiple subflows

 “Network MIMO” is a missing feature

- **Potential solution**: Multipath TCP
 - New TCP-based multipath transport protocol with several subflows
 - Resource pooling of different paths
 - Assumption: At least one multi-addressed endpoint (multi-homed device)
 - Backward compatible to current TCP, in particular same socket API

 Ongoing IETF standardization in MPTCP WG
A MULTIPATH TRANSPORT SHIM LAYER
MULTIPATH TRANSPORT DESIGN SPACE

Option encoding

- MPTCP: IETF solution
- TCP extension adding multipath transport capability for unmodified applications
- New TCP options, consuming large part of scarce TCP option space
- Tight integration in TCP/IP stack
 ➔ draft-ietf-mptcp-multiaddressed

Shim layer

- MCTCP: Multi-Connection TCP
- Hybrid approach combining a minimal TCP extension and an app protocol
- Simple and extensible type-length-value (TLV) encoding whenever possible
- Shim-layer implementation possible
 ➔ draft-scharf-mptcp-mctcp
A MULTIPATH TRANSPORT SHIM LAYER
MPTCP MESSAGE SEQUENCE DIAGRAM

Single connection mode

Change over

Multi connection mode

Initial subflow idles as a fallback

Data transfer over initial subflow: byte stream, identically to standard TCP

Data transfer over coupled subflow #1: data in TLV encoded messages

Address announce msg.

Data transfer over coupled subflow #2: data in TLV encoded messages

Join

Join

Join

Join

Payload encoding outside initial subflow (used also for fallback)
A MULTIPATH TRANSPORT SHIM LAYER
COMPARISON OF MPTCP AND MCTCP

<table>
<thead>
<tr>
<th>Feature</th>
<th>Option encoding (MPTCP)</th>
<th>Shim layer (MCTCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signaling connection setup</td>
<td>TCP options</td>
<td>TCP options</td>
</tr>
<tr>
<td>Signaling during session</td>
<td>TCP options</td>
<td>TCP payload</td>
</tr>
<tr>
<td>Extensibility</td>
<td>Difficult</td>
<td>Simple</td>
</tr>
<tr>
<td>Dropped/striped options in SYNs</td>
<td>Fallback</td>
<td>Fallback</td>
</tr>
<tr>
<td>Dropped/striped options outside SYNs</td>
<td>Fallback or failure</td>
<td>Not affected</td>
</tr>
<tr>
<td>Protocol helpers (e.g., NAPT)</td>
<td>Simple</td>
<td>Difficult</td>
</tr>
</tbody>
</table>
LINUX IMPLEMENTATION
COMPLEXITY AND LESSONS LEARNT

- **Minimal Linux 2.6.32 kernel patch**: 800 lines of code
- **Shim layer library**: 5000 lines of code (baseline protocol)
- **Challenges** for shim approach: Memory copies, flow control, blocking calls
PERFORMANCE RESULTS
EVALUATION METHODOLOGY

• Testbed setup
 • Two computers with Linux Ubuntu 10.04 running patched kernel
 • Two disjoint 10 Mbit/s Ethernet links, optionally also Wireless Local Area (WLAN)
 • Delay and packet loss by Linux “netem” tool

• TCP stack parameters
 • CUBIC congestion control, unless mentioned otherwise
 • Socket buffer size set to 262144B to prevent limitations by the TCP flow control
 • Other TCP stack parameters are set to the default values

• Applications
 • Simple client and server programs written in C
 • Also tests with a real video streaming application (VLC player) and a HTTP server
PERFORMANCE RESULTS

EFFICIENCY OF RESOURCE POOLING

MCTCP dynamically pools the available bandwidth of several paths.
PERFORMANCE RESULTS
DEALING WITH LINK OUTAGE

➤ Compensation of path failures transparent to applications
PERFORMANCE RESULTS

PERFORMANCE OVER CONGESTED LINKS

Possible support of a coupled congestion control for fairness

Coupled congestion control: Fall-back to singlepath TCP for high loss rate

Usage of both paths

Usage of one path only
PERFORMANCE RESULTS
CONGESTED REVERSE PATH

Impact only for loss packet rates larger than 10%

→ No significant impact by reverse path congestion even with DATA ACKs
PERFORMANCE RESULTS
BELL LABS OPEN DAY DEMO 2010

→ Multipath HTTP-based video **streaming without interruptions**
MULTIPATH CHALLENGES
MULTIPATH: QUO VADIS?

• Multipath use cases
 • Multi-interfaced wireless devices: Vendor support?
 • Data centers: Benefit?
 • What else? Benefit only for several roughly equal paths...

• Protocol design issues
 • MPTCP specification is still a moving target
 • Additional complexity (checksums etc.), TCP option space limitation
 • Currently one major MPTCP implementation only

• Fundamental questions
 • Multiple addresses ≠ multiple paths
 • Simple, robust algorithms for many degrees of freedom
MULTIPATH CHALLENGES
IMPACT ON CAPACITY SHARING?

• Question: Would multipath fundamentally affect capacity sharing? (assuming widespread deployment)
• Well, not necessarily...
 • Multiple paths are seldom
 • No benefit for short flows, bulk data download does it today (e.g., P2P)
 • Even without congestion control coupling still somehow similar to single-path TCP
• Capacity sharing is mostly a network task
 • Scheduling policies
 • Per-subscriber queues
 • Deep packet inspection (DPI) in border/edge routers
 • ...
CONCLUSION AND OUTLOOK
MULTIPATH CHALLENGES AND SOLUTIONS

Conclusion
• Multi-Connection TCP (MCTCP): A multipath transport shim layer
 • Simple, extensible and robust
 • Alternative to a Multipath TCP solution only using option encoding
• Evaluation of MCTCP
 • Limited implementation complexity
 • Efficient resource pooling of several paths, including congestion control coupling
• Multipath transport: Quo vadis?

Outlook
• Performance comparison with other multipath transport protocols
• More complex setups (e. g., larger topologies, German-Lab platform)
