Empowered by Innovation

Congestion Exposure in Mobility Scenarios

Faisal Ghias Mir, Dirk Kutscher, Marcus Brunner NEC Laboratories Europe

Outline

Motivation

Resource Management for Best Effort Data Traffic

Congestion Exposure (overview) and previous work

Mobility Aware Packet Marking Controller/Function

Evaluation Setup

Conclusions

Resource Management for Best-Effort Traffic

Operator-perspective

- Wants to be attractive to customers: high-speed access, ubiquitous coverage, open to all applications, cost-competitive
- Has to match network infrastructure investments to achievable income
- Has to manage network resources to keep network usable for all users

Possible approaches for Best Effort Traffic (1/2)

Existing approaches can be classified (loosely) as: Static and Dynamic

Static approaches have problems:

- Volume Cap
- Deep Packet Inspection & Filtering
- Traffic filter templates in 3GPP PCC
 - Static configuration of QCI classes

Limitation: Network congestion and Resource availability is not taken into account

Dynamic approaches

- Takes into account resource usage and capacity into account
- The scheme kicks in dynamically based on parameters of interest

Comcast Congestion Management

- Protocol and Application agnostic
- Possibly applicable to any network: wired or wireless
- Based on periodically monitoring resource usage of individual users

Congestion Exposure

 Users are made accountable to congestion they cause on other users while sharing the network resources not based on resource usage alone: <u>Cost Fairness</u>

General Approach: Congestion Exposure

Network functions proposed by congestion exposure:

- Rate-limit traffic based on declared congestion: <u>Policer</u>
- Enforce correct operation: <u>Audit</u>
 <u>Function</u>

Previous Work

Congestion Exposure benefits for mobile communication networks

Dirk Kutscher, Faisal Ghias Mir, Rolf Winter, Suresh Krishnan, Ying Zhang IETF Draft, Mobile Communication Congestion Exposure Scenario

Wireless resource-usage-aware ECN marking for Congestion Exposure

Dirk Kutscher, Henrik Lundqvist, Faisal Ghias Mir, Congestion Exposure in Mobile Wireless Communications. Globecomm 2010. *pp 1-6*

Efficient audit function implementation for Congestion Exposure

Faisal Ghias Mir, Dirk Kutscher, Rolf Winter, Marcus Brunner, A framework for efficient Dropper implementation for Congestion Exposure, (To appear Globecomm 2011)

Investigating effects of dynamic path characteristics changes on Congestion Exposure

Faisal Ghias Mir, Dirk Kutscher, Marcus Brunner, Congestion Exposure in Mobility Scenarios. NGI 2011, Kaiserslautern

Congestion Declaration (1/2)

Lag between the forward and feedback path Congestion is not stationary and changes with offered load Sender responsibility to match congestion with response

Pre-Credits + Post-Credits >= Deficit

Congestion Declaration (2/2)

Congestion Exposure context at the sending host

- Path Adaptability i.e. cwnd = 1
- Estimate of congestion from received acknowledgements
- The context applies to one half of TCP connection
- No activity on connection invalidate the context

Mobility aspects for Congestion Exposure

Path adaptability vs. path changes

Issues with path changes

- New path state is unknown
- In-flight packets
- How much the actual path has been changed e.g., horizontal vs. vertical handover
- How to estimate congestion on the new path?

Mobility Aware Congestion Declaration

With path changes, congestion estimate may no longer be valid Invalidate the context for the sender to "<u>adapt"</u> to the new path User may move between different congestion regions with path changes Use Path Predictability Factor for estimating congestion

Exploiting Network Topology

Congestion may occur in any part of a network, access or core Exploit exposed congestion information on the path

• Network may estimate congestion for traffic passing going to a particular gateway node Pass this information to UE's for adapting to expected congestion levels

Procedure for Exploiting Congestion Information

Hints pushed from base stations to the UE

Base stations exchange congestion information e.g. X2 interface in LTE

OpenFlow-based Test Bed

The goal is to measure deficit close to the receiving host on path changes NEC IP-8800 OpenFlow switch for dynamic load shifting NOX controller for switching path between hosts RED Queues in Linux Routers for congestion markings

Impact of TCP Slow Start

TCP exponential increase during Slow Start causes lots of congestion During congestion avoidance deficit remains low Characteristic of the transport on how bandwidth is probed

Loss of Marked Packets

Mobility Scenario with Delta at Egress

Response packet loss causes deficit not recoverable Audit Function would classify such traffic as non-conformant

Path Changes with different capacity Regions

Load shift on 3 second interval

Capacity is varied by 50% for a single TCP flow

Deficit is recorded for scenario when load is shifted from lower to higher congestion regions

Conclusions

Congestion exposure can be done on different time scales and with different granularity levels

 For effective capacity sharing and sender adaptivity, accurate and timely congestion exposure is required

Sender should take mobility into consideration

- Need some flexibility for dynamic changing of path characteristics
- Congestion estimate may not be valid after changes

A slightly more tolerant policer configuration

Avoid policing/accounting for probing traffic

Relaxed Audit Function configuration for short time scales

Tradeoff between accurate enforcement and accommodating mobility

Empowered by Innovation

